精英家教网 > 初中数学 > 题目详情
一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的高是(  )
分析:根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.
解答:解:圆锥的底面周长是:
1
2
×
2πr=π;
设圆锥的底面半径是x,则2πx=π.
解得:x=
1
2

故选:C.
点评:此题主要考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为
 

(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪二模)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是
1
2
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白下区二模)一个圆锥的侧面展开图是半径为2的半圆,则该圆锥的底面半径是
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一个圆锥的侧面展开图是90°的扇形.
(1)求圆锥的母线长l与底面半径r之比;
(2)若底面半径r=2,求圆锥的高及侧面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在单位长度为1的正方形网格中建立平面直角坐标系,一段圆弧经过网格的交点为A、B、C.
(1)在图中标出该圆弧所在圆的圆心D,并连接AD、CD
(2)在(1)的基础上,完成下列填空:
①写出点的坐标:C
(6,2)
(6,2)
、D
(2,0)
(2,0)

②⊙O的半径是
2
5
2
5
(结果保留根号).
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为
5
4
π
5
4
π
(结果保留π).
(3)若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.

查看答案和解析>>

同步练习册答案