【题目】如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为(-1,2)、(1,1).抛物线y=ax2+bx+c(a≠0)与x轴交于C、D两点,点C在点D左侧,当顶点在线段AB上移动时,点C横坐标的最小值为-2.在抛物线移动过程中,a-b+c的最小值是____.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y=ax2+bx﹣1交y轴于点P.
(1)过点P作与x轴平行的直线,交抛物线于点Q,PQ=4,求的值;
(2)横纵坐标都是整数的点叫做整点.在(1)的条件下,记抛物线与x轴所围成的封闭区域(不含边界)为W.若区域W内恰有4个整点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
求出每天的销售利润元与销售单价元之间的函数关系式;
求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,号楼在号楼的南侧,两楼高度均为楼间距为.冬至日正午,太阳光线与水平面所成的角为.号楼在号楼墙面上的影高为,春分日正午,太阳光线与水平面所成的角为,号楼在号楼墙面上的影高为.已知.
(1)求楼间距;
(2)若号楼共层,层高均为则点位于第几层? ( 参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),则称△PQN为“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等边三角形,判断△ABC是否为“差角三角形”,并说明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判断△ABC是否为“差角三角形”,若是,请写出所有的“差角”并说明理由;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作)BD是矩形ABCD的对角线,AB=4,BC=3.将△BAD绕着点B顺时针旋转α度(0°<α<360°)得到△BEF,点A、D的对应点分别为E、F.若点E落在BD上,如图①,则DE=______.
(探究)当点E落在线段DF上时,CD与BE交于点G.其它条件不变,如图②.
(1)求证:△ADB≌△EDB;
(2)CG的长为______.
(拓展)连结CF,在△BAD的旋转过程中,设△CEF的面积为S,直接写出S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在抗击新冠肺炎疫情期间,市场上防护口罩出现热销.某药店用元购进甲,乙两种不同型号的口罩共个进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的倍.
求购进的甲,乙两种口罩的单价各是多少?
若甲,乙两种口罩的进价不变,该药店计划用不超过元的资金再次购进甲,乙两种口罩共个,求甲种口罩最多能购进多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.
(1)求一次函数和的表达式;
(2)在轴上是否存在一点,使得是以为腰的等腰三角形,若存在,求出点的坐标;若不存在,请说明理由.
(3)反比例函数的图象记为曲线,将向右平移3个单位长度,得曲线,则平移至处所扫过的面积是_________.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的解析式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com