精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知点A(4,0),点B(0,3),点P从点B出发沿BA方向向点A匀速运动,速度为每秒1个单位长度,点Q从点A出发沿AO方向向点O匀速运动,速度为每秒2个单位长度,连接PQ.若设运动的时间为t秒(0<t<2).

(1)求直线AB的解析式;

(2)设△AQP的面积为y,求y与t之间的函数关系式;

(3)是否存在某一时刻t,使线段PQ恰好把△AOB的周长和面积同时平分?若存在,请求出此时t的值;若不存在,请说明理由;

(4)连接PO,并把△PQO沿QO翻折,得到四边形PQP′O,那么是否存在某一时刻t,使四边形PQP′O为菱形?若存在,请求出此时点Q的坐标和菱形的边长;若不存在,请说明理由.

【答案】1y=﹣x+3;(2y=﹣t2+3t;(3)不存在某一时刻t,使线段PQ恰好把AOB的周长和面积同时平分,理由见解析;(4)存在某一时刻t,使四边形PQP'O为菱形,点Q的坐标是(),菱形PQP′O的边长为

【解析】

1)已知了AB两点的坐标,可用待定系数法求出直线AB的解析式.
2)三角形APQ中,底边AQ的长易知,关键是求P点纵坐标的值;过PPMOAM,通过构建的相似三角形得出的成比例线段,可求出PM的长.进而可根据三角形的面积公式求出yt的函数关系式.
3)可用分析法求解.先假设存在这样的t值,由于此时PQ将三角形ABO的周长平分,因此BP+BO+OQ=AP+AQ,据此可求出t的值,然后将t的值,代入(2)的函数关系式中,看此时三角形APQ的面积是否等于三角形AOB的面积的一半即可.
4)如果四边形OPQP′是菱形,那么需要满足的条件是OP=PQ,那么PM垂直平分OQ,此时QM=OQ,可借助OA的长来求t的值.过PPNOBN,那么三角形BNP和三角形BOA相似,可求得PN的表达式,也就求出了QMMO的表达式,可根据OA=OM+QM+AQ来求出此时t的值.进而可求出菱形的边长.

1)设直线AB的解析式为ykx+b

解得

直线AB的解析式是

2)在Rt△AOB中,AB5

依题意,得BPtAP5tAQ2t

过点PPM⊥AOM

∵△APM∽△ABO

∴PM3t

∴yAQPM2t3t)=﹣t2+3t

3)不存在某一时刻,使线段PQ恰好把△AOB的周长和面积同时平分,

PQ△AOB周长平分,则AP+AQBP+BO+OQ

5t+2tt+3+42t),

解得t1

PQ△AOB面积平分,则SAPQSAOB

t2+3t3

t1代入上面方程不成立,

不存在某一时刻t,使线段PQ△AOB的周长和面积同时平分.

4)存在某一时刻t,使四边形PQP'O为菱形,

过点PPN⊥BON

若四边形PQP′O是菱形,则有PQPO

∵PM⊥AOM

∴QMOM

∵PN⊥BON,可得△PBN∽△ABO

∴PNt

∴QMOMt

t+t+2t4

t

t时,四边形PQP′O是菱形,

∴OQ42t

Q的坐标是(0).

∵PM3tOMt

Rt△PMO中,PO

菱形PQP′O的边长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是23,从每组牌中各随机摸出一张牌,称为一次试验.

1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?

2)小丽认为:在一次试验中,两张牌的牌面数字和可能为456三种情况,所以出现和为4’的概率是,她的这种看法是否正确?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为中,弦所对的圆心角分别是,若,则弦的长等于( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形

探索体验

1)如图①,已知四边形ABCD等对角四边形,∠A≠C,∠A=70°,∠B=80°.求∠C,∠D的度数.

2)如图②,若AB=AD=aCB=CD=b,且a≠b,那么四边形ABCD等对角四边形吗?试说明理由.

尝试应用

3)如图③,在边长为6的正方形木板ABEF上裁出等对角四边形”ABCD,若已经确定DA=4,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点点C,使四边形ABCD以∠DAB=BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=x与双曲线y=交于A、B两点,且点A的横坐标为

(1)求k的值;

(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;

(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.

查看答案和解析>>

同步练习册答案