精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)若此抛物线的顶点为P,将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.
①当O′C′CP时,求α的大小;
②△BOC在第一象限内旋转的过程中,当旋转后的△BO′C′有一边与BP重合时,求△BO′C′不在BP上的顶点的坐标.
(1)由题意得
-
b
2a
=1
a-b+c=0
c=3

解得
a=-1
b=2
c=3

所以,此抛物线的解析式为y=-x2+2x+3;

(2)①如图,
顶点P为(1,4),CP=
12+12
=
2
,BC=
32+32
=3
2

BP=
22+42
=2
5

又因为CP2+BC2=PB2
所以∠PCB=90°.
又因为O′C′CP,
所以O′C′⊥BC,
所以点O′在BC上,
所以α=45°.
②如备用图1,
当BC′与BP重合时,过点O′作O′D⊥OB于D.
因为∠PBC+∠CBO′=∠CBO′+∠ABO′=45°,
所以∠ABO′=∠PBC.
则△DBO′△CBP,
所以
BD
BC
=
O′D
PC

所以
BD
3
2
=
O′D
2

所以BD=3O′D.
设O′D=x,则BD=3x,根据勾股定理,得x2+(3x)2=32
解得x=
3
10
10

所以BD=
9
10
10

所以点O′的坐标为(3-
9
10
10
3
10
10
).
如备用图2,
当BO′与BP重合时,过点B作x轴的垂线BE,过点C′作C′E⊥BE于E,
因为∠PBE+∠EBC′=∠PBE+∠CBP=45°,
所以∠EBC′=∠PBC.
所以△EBC′△CBP,
所以
BE
BC
=
C′E
PC

所以
BE
3
2
=
C′E
2

所以BE=3C′E.
设C′E为y,则BE=3y,根据勾股定理,
y2+(3y)2=(3
2
)2

解得y=
3
5
5

所以BE=
9
5
5

所以C′的坐标为(3+
3
5
5
9
5
5
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-
2
3
x+2
与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴的另一交点坐标为A(-1,0).

(1)求B、C两点的坐标及该抛物线所对应的函数关系式;
(2)P在线段BC上的一个动点(与B、C不重合),过点P作直线ay轴,交抛物线于点E,交x轴于点F,设点P的横坐标为m,△BCE的面积为S.
①求S与m之间的函数关系式,并写出自变量m的取值范围;
②求S的最大值,并判断此时△OBE的形状,说明理由;
(3)过点P作直线bx轴(图2),交AC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,请求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:抛物线y=ax2-4ax+m与x轴交于A、B两点,点A的坐标是(1,0),与y轴交于点C.
(1)求抛物线的对称轴和点B的坐标;
(2)过点C作CP⊥对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且∠BPD=∠BCP,求抛物线的解析式;
(3)在(2)的条件下,设抛物线的顶点为G,连接BG、CG、求△BCG的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A,B,C的横坐标分别为4,10,12.
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的平面直角坐标系,则此时大孔的水面宽度EF为______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点A1、A2、A3、…、An在抛物线y=x2图象点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形(点B0是坐标原点),则△A2012B2011B2012的腰长=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形ABCD的顶点A、B、C的坐标分别为(
1
2
,0)、(2,0)和(2,3),ABCD,∠C=90°,CD=CB.
(1)求点D的坐标;
(2)抛物线y=ax2+bx+c过原点O与点(7,1),且对称轴为过点(4,3)与y轴平行的直线,求抛物线的函数关系式;
(3)在(2)中的抛物线上是否存在一点P,使得PA+PB+PC+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约
5
3
m
.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据如图所示的直角坐标系,你能算出该运动员的成绩吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用一段长为20米的篱笆围成一个一边靠墙的矩形菜园,墙长为12米,这个矩形的长宽各为多少时,菜园的面积最大,最大面积是多少?

查看答案和解析>>

同步练习册答案