精英家教网 > 初中数学 > 题目详情
6.(1)已知x+y=4,x2+y2=9,求xy的值;
(2)如图,AB,CD相交于点O,OE平分∠AOD,已知∠AOC=120°,求∠AOE的度数.

分析 (1)先根据完全平方公式进行变形,代入后即可求出答案;
(2)先求出∠AOD,再根据角平分线定义求出即可.

解答 解:(1)∵x+y=4,x2+y2=(x+y)2-2xy=9,
∴42-2xy=9,
∴2xy=7,
∴xy=$\frac{7}{2}$;

(2)∵∠AOC=120°,
∴∠AOD=180°-∠AOC=60°,
∵OE平分∠AOD,
∴∠AOE=$\frac{1}{2}$∠AOD=30°.

点评 本题考查了角平分线定义,邻补角,完全平方公式等知识点,能熟记公式的特点是解(1)的关键,能求出∠AOD是解(2)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.在正方形ABCD中,点E是边BC上的中点,在边CD上取一点F,使得AE平分∠BAF.
(1)依题意补充图形;
(2)小玲画图结束后,通过观察、测量,提出猜想:线段AF等于线段BC与线段CF的和.小玲把这个猜想与同学们进行交流.通过讨论,形成了证明该猜想的几种想法:
想法1:考虑到AE平分∠BAF,且∠B=90°.若过点E作EM⊥AF,则易证AM=AB=BC.这样,只需证明FM=FC即可.因∠EMF=∠C=90°,证FM=FC即证EF平分∠MEC,所以连接EF.
想法2:考虑到E是BC中点,若延长AE,交DC的延长线于点G,则易证CG=AB,则CF+BC=CF+CG=FG.要证AF=BC+CF,只需证FA=FG即可.
想法3:小米在课外小组学习了梯形中位线的相关知识,考虑到正方形ABCD所以有BC=AB,因此BC+CF=AB+CF,是梯形上、下底之和,结合“E是BC中点”,易联想到梯形中位线的性质,从而解决问题.

请你参考上面的想法,帮助小玲证明AF=BC+CF.(一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图长方形OABC的位置如图所示,点B的坐标为(8,4),点P从点C出发向点O移动,速度为每秒1个单位;点Q同时从点O出发向点A移动,速度为每秒2个单位,设运动时间为t(0≤t≤4)
(1)填空:点A的坐标为(8,0),点C的坐标为(0,4)),点P的坐标为(0,4-t).(用含t的代数式表示)
(2)当t为何值时,P、Q两点与原点距离相等?
(3)在点P、Q移动过程中,四边形OPBQ的面积是否变化?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知M=5x2+3,N=4x2+4x.
(1)求当M=N时x的值;
(2)当1<x<$\frac{5}{2}$时,试比较M,N的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.

(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知一次函数y=kx+b的图象经过第二、三、四象限,则反比例函数y=$\frac{kb}{x}$的图象在(  )
A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.某市在一次空气污染指数抽查中,收集到10天的数据如下:106,60,74,100,92,67,75,67,87,119.该组数据的中位数是81.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,△ABC的顶点A、B、C的坐标分别为A(-2,0)、B(0,4)、C(8,0).
(1)在图中画出△ABO关于直线y=x+2的对称图形,记做△A′B′O′;
(2)将(1)中的△A′B′O′沿x轴向右平移,当点A′与点C重合时停止运动,若平移速度为每秒1个单位,运动时间为t,设平移后的图形与△BCO的重叠部分面积为S,在△A′B′O′运动过程中,S关于t的函数图象如图2所示(其中0≤t≤m,m<t≤n,n<t<k时,函数的解析式不同)
①填空:n的值为:6;
②试求S与t的函数关系式,并直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.“已知△ABC的三条边长分别为$\sqrt{5}$,$\sqrt{10}$,$\sqrt{13}$,求这个三角形的面积.”在解决这个问题时,我们可以先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图甲所示.这样不需要求三角形的高,就可以借用网格计算出它的面积.
(1)直接写出上述△ABC的面积=$\frac{7}{2}$;
(2)上述求三角形面积的方法叫做“构图法”.用此方法在图乙的正方形网格中(每个小正方形的边长a,a>0)画出三边长分别为2$\sqrt{2}$a,$\sqrt{5}$a,$\sqrt{17}$a的三角形,并求出它的面积;
(3)若△ABC的三边长分别为2$\sqrt{{m}^{2}{+n}^{2}}$,$\sqrt{{m}^{2}+1{6n}^{2}}$,$\sqrt{9{m}^{2}+4{n}^{2}}$,其中m>0,n>0,且m≠n,求这个三角形的面积(用含有m,n的代数式表示).

查看答案和解析>>

同步练习册答案