精英家教网 > 初中数学 > 题目详情
19.现有一张残缺的圆形轮片(如图所示),已知轮片的一条弦AB的垂直平分线交弧AB于点C,交弦AB于点D,测得AB=24cm,CD=8cm.
(1)请你帮张师傅找出此残片所在圆的圆心(尺规作图,不写作法,保留作图痕迹);
(2)求(1)中所作圆的半径.

分析 (1)由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;
(2)在Rt△OAD中,由勾股定理得出方程,解方程可求得半径OA的长.

解答 解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,
以O为圆心OA长为半径作圆O就是此残片所在的圆,
如图1所示.
(2)连接OA,如图2所示:
设OA=x,AD=12cm,OD=(x-8)cm,
则根据勾股定理列方程:
x2=122+(x-8)2
解得:x=13.
答:圆的半径为13cm

点评 本题考查了垂径定理,中垂线的性质,勾股定理;熟练掌握垂径定理,由勾股定理得出方程是解决问题(2)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),观察图案,指出以下关系式:①x-y=n;②xy=$\frac{{m}^{2}-{n}^{2}}{4}$;③x2-y2=mn;④x2+y2=$\frac{{m}^{2}-{n}^{2}}{2}$.其中正确的关系式的有①②③.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AB⊥BC,射线CM⊥BC,且BC=5,AB=1,点P是线段BC (不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.
(1)如图1,当BP=4时,△ADP是等腰直角三角形.(请直接写出答案)
(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并加以证明.
(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,请画出图形,并求线段B′D的长度.(参考定理:若直角△ABC中,∠C是直角,则BC2+AC2=AB2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.下面的图形是由边长为1的正方形按照某种规律排列而组成的.

(1)观察图形,填写下表:
 图形个数(n) ① ② ③
 正方形的个数 91318
 图形的周长 1628 38 
(2)推测第n个图形中,正方形的个数为5n+3,周长为10n+8(都用含n的代数式表示).
(3)写出第2016个图形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.若圆的一条弦把圆分成度数比为1:3的两条弧,则该弦所对的圆心角度数是(  )
A.90°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.画出一条数轴,在数轴上表示数-12,2,-(-3),-|-2$\frac{2}{3}$|,0,并把这些数用“<”连接起来.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A($\frac{3}{2}$,0),B(0,2),则点B6的坐标为(  )
A.(18,0)B.(18,2)C.(16,2)D.(16,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为了能有效地使用电力资源,某县实行居民峰谷用电,居民家庭在峰时段(上午8:00-晚上21:00)用电的价格是每度0.55元,谷时段(晚上21:00-次日晨8:00)用电的价格是每度0.35元.若某居民户某月用电120度,其中峰时段用电a度.
(1)请用含a的代数式表示该居民户这个月应缴纳的电费;
(2)利用上述代数式计算当a=70时,应缴纳电费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=12.

查看答案和解析>>

同步练习册答案