精英家教网 > 初中数学 > 题目详情
如图所示,直线AB、CD相交于点O,OE平分∠AOD.∠AOC=120°,求∠DOE的度数.
分析:根据题意可知,∠AOC+∠AOD=180°,然后再由OE平分∠AOD,得出∠DOE=∠AOD,从而可以求出∠DOE的度数.
解答:解:∵∠AOC=120°,
∴∠AOD=180°-∠AOC=60°,
又∵OE平分∠AOD,
∴∠DOE=
1
2
∠AOD,
∴∠DOE=30°.
点评:本题考查了对顶角和邻补角,以及角平分线的定义,解题的关键是熟练运用定义,此题比较简单,易于掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图所示,直线AB、CD相交于点O.若OM=ON=MN,那么∠APQ+∠CQP=
240°

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,直线AB与x轴交于A,与y轴交于B.
(1)写出A,B两点的坐标;
(2)求直线AB的函数解析式;
(3)当x=5时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB与CD相交于点O,∠DOE=60°,∠BOE=27°,求∠BOD,∠AOD,∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB、CD相交于点O,∠BOD=40°,OA平分∠EOC,则∠EOD的度数为
100°
100°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线AB、CD、EF相交于点O,且EF⊥CD,若∠AOE=30°,则∠AOC=
60
60
°,∠AOF=
150
150
°,∠BOC=
120
120
°.

查看答案和解析>>

同步练习册答案