精英家教网 > 初中数学 > 题目详情
如图,⊙O1和⊙O2内切于点P,⊙O2的弦AB经过⊙O1的圆心O1,交⊙O1于点C、D,若AC:CD:BD=3:4:2,则⊙O1与⊙O2的直径之比为(  )
A.
2
7
B.
2
5
C.
1
4
D.
1
3

圆O1与圆O2内切于点P,O1,O2,P在一直线上,此直线与圆O2的另一交点设为E.
∴O1A•O1B=O1P•O1E,
∵若AC:CD:BD=3:4:2,⊙O2的弦AB经过⊙O1的圆心O1
∴O1A:O1B=5:4,
设O1A=5x,则O1B=4x,CO1=2x,
∴O1E=
5x•4x
2x
=10x,
∴圆O1与圆O2的直径分别为:4x,12x,
∴圆O1与圆O2的直径之比为:
4x
12x
=
1
3

故选:D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a,0)半径为5.如果两圆内含,那么a的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

天象图片欣赏:
如图1是2004年5月5日2时48分到3时52分在北京拍摄的从初亏到食既的月全食过程.
数学问题解决:
用数学的眼光看图1,可以认为是地球、月球投影(两个圆)的位置关系发生了从外切、相交到内切的变化:2时48分月球投影开始进入地球投影的黑影(图2);接着月球投影沿直线OP匀速地平行移动进入地球投影的黑影(图3);3时52分,这时月球投影全部进入地球投影的黑影(图4).
设照片中的地球投影如图2中半径为R的大圆⊙O,月球投影如图2中半径为r的小圆⊙P,求这段时间内圆心距OP与时间t(分)的函数关系式,写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于A,交⊙O2于B,AC切⊙O2于C,交⊙O1于D,且PB、PD的长恰好是关于x的方程x2-
m+16
x+4=0
的两个根.
(1)求证:∠1=∠2;
(2)求PC的长;
(3)若弧BP=弧BC,且S△PBC:S△APC=1:k,求代数式m(k2-k)的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

写出一种与图中不同的圆和圆的位置关系:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,边长为a的正方形ABCD中,有以A为圆心的弧
EF
,⊙O和BC,CD,
EF
都相切,且⊙O的周长等于
EF
的长,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,求∠OAD+∠OCD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

圆内接正六边形和同圆外切正六边形面积的比为(  )
A.
3
:2
B.1:2C.3:4D.1:4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1、图2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.
(1)求图1中,重叠部分面积与阴影部分面积之比;
(2)求图2中,重叠部分面积与阴影部分面积之比(直接出答案);
(3)根据前面探索和图3,你能否将本题推广到一般的正n边形情况,(n为大于2的偶数)若能,写出推广问题和结论;若不能,请说明理由.

查看答案和解析>>

同步练习册答案