【题目】每年的4月23日被联合国教科文组织确定为“世界读书日”.为满足同学们的读书需某校图书室在今年“世界读书日”期间准备到书店购买文学名著和科普读物两类图书.已知20本文学名著和40本科普读物共需1520元,20本文学名著比20本科普读物多440元(注:所采购的文学名著价格都一样,所购买的科普读物的价格都一样).
(1)每本文学名著和科普读物各多少元?
(2)若学校要求购买科普读物比文学名著多20本,科普读物和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.
【答案】(1)每本文学名著和科普读物各为40元和18元;(2)方案一:文学名著26本,科普读物46本;方案二:文学名著27本,科普读物47本;方案三:文学名著28本,科普读物48本.
【解析】
(1)根据对学名著和科普读物两种图书的价格分别设未知数,然后根据图书总的价格为1520元和20本文学名著比20本科普读物多440元两个条件,列出两个方程进行解二元一次方程组;(2)根据题目要求可列出两个不等式,根据不等式求解,而且不等式的解是整数,即可得出符合题目的购书方案.
(1)设每本文学名著x元,科普读物y元,
可得:,
解得:,
答:每本文学名著和科普读物各为40元和18元;
(2)设学校要求购买文学名著x本,科普读物为(x+20)本,
根据题意可得:,
解得:26≤x≤,
因为取整数,
所以x取26,27,28;
方案一:文学名著26本,科普读物46本;
方案二:文学名著27本,科普读物47本;
方案三:文学名著28本,科普读物48本.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为(-3,3),以A为顶点的∠BAC的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.过点A作AD⊥x轴,垂足为D,当DC=1时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,则点M的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C为线段AE上一动点(不与点A,点E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下四个结论,①AD=BE;②CP=CQ;③OB=DE;④PQ∥AE,一定成立的结论有_____(请把正确结论的序号填在横线上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,二次函数y=ax2+bx+c(a≠0)的图象的顶点D在第四象限内,且该图象与x轴的两个交点的横坐标分别为﹣1和3.若反比例函数y=(k≠0,x>0)的图象经过点D.则下列说法不正确的是( )
A.b=﹣2a B.a+b+c<0 C.c=a+k D.a+2b+4c<8k
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,点G是⊙O上一点,AG交CD于点K,延长KD至点E,使KE=GE,分别延长EG、AB相交于点F.
(1)求证:EF是⊙O的切线;
(2)若AC∥EF,试探究KG、KD、GE之间的关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=2
,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.
(1)求∠PAQ的度数.
(2)若△APQ周长为12,BC长为8,求PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com