精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,AB是⊙O的直径,AB=10,E是点D关于AB的对称点,MAB上的一动点,下列结论:①∠BOE=60°;②∠CED=DOB;DMCE;CM+DM的最小值是10,上述结论中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根据弧AC=CD=DB和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出CED,即可判断①②;根据圆周角定理求出M和A重合时,∠MDE=60°,即可判断③;根据轴对称的性质,求出M的位置,根据圆周角定理求出此时CE为直径,即可得到CE的长,判断④.

AC=CD=DB,

∴∠DOB=∠COD=∠BOE=60°,

故①正确;

∵AB为直径,且点E是点D关于AB的对称点

∴∠E=∠D,AB⊥DE

∴∠CED=∠DOB=30°,

正确

M和A重合时,∠MDE=60°,

∴∠MDE+∠E=90°

∴DM⊥CE

不正确

根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,

∵∠DOB=∠COD=∠BOE=60°

CE为直径,即CE=10,

正确.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某家电商场计划用9万元从生产厂家购进50台电视机,已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你计算一下商场有哪几种进货方案?

2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,应选择哪种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为平行四边形ABCDAD上一点,EF分别为PBPC的中点,△PEF△PDC△PAB的面积分别为SS1S2,若S=2,则S1+S2=( )

A. 4 B. 6 C. 8 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC中,A(﹣21)、B(﹣4,﹣2)、C(﹣1,﹣3),ABCABC平移之后得到的图,并且C的对应点C的坐标为(41)。

1AB.两点的坐标分别为A      B      

2)请作出ABC平移之后的图形ABC

3)求A′B′C′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重百沃尔玛两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.

1)请问:一个保温壶与一个水杯售价各是多少元;(列方程组求解)

2)为了迎接五一劳动节,两家超市都在搞促销活动,重百超市规定:这两种商品都打九折;沃尔玛超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.

(1)求证:△ECF∽△GCE;

(2)求证:EG是⊙O的切线;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2海里的点A.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中,

1)请写出各点的坐标;

2)若把△ABC向上平移2个单位,再向左平移1个单位得到,在图中画出三角形ABC变化后的位置,写出ABC的坐标;

3)求出△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在△ABC中,AC=BC,∠ ACB=90°,AD平分∠BACBC边于点D,过BBHAD,交AC的延长线于点EH为垂足.

(1)求证: △ACD ≌ △BCE

(2)找出BHBC有怎样的数量关系(直接写出答案)

查看答案和解析>>

同步练习册答案