【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
【答案】(1)y=50-,且0≤x≤160,且x为10的正整数倍.(2)w=-x2+34x+8000;(3)一天订住34个房间时,宾馆每天利润最大,最大利润为10880元.
【解析】试题分析:(1)理解每个房间的房价每增加x元,则减少房间间,则可以得到y与x之间的关系;
(2)每个房间订住后每间的利润是房价减去20元,每间的利润与所订的房间数的积就是利润;
(3)求出二次函数的对称轴,根据二次函数的增减性以及x的范围即可求解.
试题解析:(1)由题意得:
y=50-,且0≤x≤160,且x为10的正整数倍.
(2)w=(180-20+x)(50-),即w=-x2+34x+8000;
(3)w=-x2+34x+8000=-(x-170)2+10890
抛物线的对称轴是:x=170,抛物线的开口向下,当x<170时,w随x的增大而增大,
但0≤x≤160,因而当x=160时,即房价是340元时,利润最大,
此时一天订住的房间数是:50-=34间,
最大利润是:34×(340-20)=10880元.
答:一天订住34个房间时,宾馆每天利润最大,最大利润为10880元.
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC和△DEF(它们均为锐角三角形)中,AC=DF,AB=DE.
(1)用尺规在图中分别作出AB、DE边上的高CG、FH(不要写作法,保留作图痕迹).
(2)如果CG=FH,猜测△ABC和△DEF是否全等,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,
(1)求证:DF与⊙O的位置关系并证明;
(2)求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a,b满足(a﹣3)2+|b﹣6|=0,现同时将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我县近两个多月持续高温而且没有降雨导致居民用水严重紧缺,为了加强市民的节水意识,我县制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨2元,超过10吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.
(1)若0<x≤10,请写出y与x的函数关系式.
(2)若x>10,请写出y与x的函数关系式.
(3)如果该户居民这个月交水费29元,那么这个月该户用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画出函数y1=-x+1,y2=2x-5 的图象,利用图象回答下列问题:
(1)方程组的解是_______________.
(2)y1随x增大而_________, y2随x增大而________.
(3)当y1>y2时,x的取值范围 是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展课外体育活动,决定开展:篮球、乒乓球、踢毽子、跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢篮球项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.
(1)证明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度数;
(3)设DE交AB于点G,若DF=4,cosB=,E是弧AB的中点,求EGED的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:
等级 | 做家务时间(小时) | 频数 | 百分比 |
A | 0.5≤x<1 | 3 | 6% |
B | 1<x<1.5 | a | 30% |
C | 1.5≤x<2 | 20 | 40% |
D | 2≤x<2.5 | b | m |
E | 2.5≤x<3 | 2 | 4% |
(1)这次活动中抽查的学生有______人,表中a=______,b=______,m=______,并补全频数分布直方图;
(2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com