精英家教网 > 初中数学 > 题目详情
11.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为$\sqrt{3}$的线段的概率为$\frac{2}{5}$.

分析 利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可.

解答 解:连接AF,EF,AE,过点F作FN⊥AE于点N,
∵点A,B,C,D,E,F是边长为1的正六边形的顶点,
∴AF=EF=1,∠AFE=120°,
∴∠FAE=30°,
∴AN=$\frac{\sqrt{3}}{2}$,
∴AE=$\sqrt{3}$,同理可得:AC=$\sqrt{3}$,
故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为$\sqrt{3}$的线段有6种情况,
则在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为:$\frac{2}{5}$.
故答案为:$\frac{2}{5}$.

点评 此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AE的长是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,在四边形ABCD中,E为AB边上一点,ED⊥AD于D,EC⊥CB于C,且∠AED=∠BEC,AB=2$\sqrt{13}$,AD=3,BD=$\sqrt{37}$,M、N分别为AE、BE的中点,连接DM、CN,则△DEM与△CEN的周长之和为2$\sqrt{13}$+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘铭随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)如果该市有8万名初中生,持“无所谓”态度的学生大约有多少人?
(4)从这次接受调查的家长与学生中随机抽查一个,恰好是“无所谓”态度的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,点A($\sqrt{3}$,1)、B(2,0)、O(0,0),反比例函数y=$\frac{k}{x}$图象过点A.
(1)求k的值;
(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)某校有A、B两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐,求三位同学在相同食堂就餐的概率.
(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是$\frac{1}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列点中,位于函数y=$\frac{2}{x}$图象上的是(  )
A.(1,2)B.(1,$\frac{1}{2}$)C.(1,1)D.(2,$\frac{1}{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某班举行联欢会,规定每个同学同时转动转盘①与转盘②(它们分别被二等分和三等分).若两个转盘停止后,指针所指的数字之积为奇数,则这个同学要表演唱歌节目;若数字之积为偶数,则要表演其它节目.试求出转动转盘的同学表演唱歌节目的概率.(用树状图或列表方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两幅统计图中的B补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知ABCD在矩形中,BE平分∠ABC交矩形的一边于点E,若BD=10,∠EBD=15°,则AB=5或5$\sqrt{3}$.

查看答案和解析>>

同步练习册答案