A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.
(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;
(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?
解:(1)从A市运往C县的农用车为x辆,此次调运总费为y元,根据题意得: y=300x+200(42-x)+150(50-x)+250(x-2), 即y=200x+15400, 所以y与x的函数关系式为:y=200x+15400. 又∵, 解得:2≤x≤42,且x为整数, 所以自变量x的取值范围为:2≤x≤42,且x为整数. (2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000 解得:x≤3,∴x可以取:2或3, 方案一:从A市运往C县的农用车为2辆,从B市运往C县的农用车为40辆,从A市运往D县的农用车为48辆,从B市运往D县的农用车为0辆, 方案二:从A市运往C县的农用车为3辆,从B市运往C县的农用车为39辆,从A市运往D县的农用车为47辆,从B市运往D县的农用车为1辆, ∵y=200x+154000是一次函数,且k=200>0,y随x的增大而增大, ∴当x=2时,y最小,即方案一费用最小, 此时,y=200×2+15400=15800, 所以最小费用为:15800元. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:云南省中考真题 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012年湖北省黄冈市浠水县六神中学中考数学模拟试卷(二)(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2012年湖北省黄冈市中考适应性考试数学试卷(十五)(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2011年云南省昆明市中考数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com