精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为
5
5
-5
5
5
-5
分析:首先建立平面坐标系:过点G作GM⊥x轴于点M,进而得出抛物线解析式,进而表示出G点坐标,再利用FG+MG=10,进而求出即可.
解答:解:如图建立平面坐标系:过点G作GM⊥x轴于点M,
设抛物线解析式为:y=ax2
∵正方形ABCD边长为10,
∴B点坐标为:(5,-10),
将B点代入y=ax2
则-10=25a,
解得:a=-
2
5

设G点坐标为:(a,-
2
5
a2),
则GF=2a,
∴MG=10-GF,即
2
5
a2=10-2a,
整理的:a2+5a-25=0,
解得:a1=
-5+5
5
2
,a2=
-5-
5
2
(不合题意舍去),
∴正方形EFGH的边长FG=2a=5
5
-5.
故答案为:5
5
-5.
点评:此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案