精英家教网 > 初中数学 > 题目详情
23、已知:如图,△ABC≌△ADE,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.
分析:AF⊥BD或AF⊥CE或DB∥CE或CD=EB.首先可以利用已知条件证明△ACD≌△AEB,然后根据全等三角形的性质即可求解.答案不唯一.
解答:CD=EB.
证明:∵△ABC≌△ADE
∴AC=AE
AD=AB
∠CAB=∠EAD∴∠CAD=∠EAB
∴△ACD≌△AEB(5分)
∴CD=EB.(6分)
AF⊥BD或AF⊥CE或DB∥CE相应给分.
点评:此题是开放性试题,主要考查了全等三角形的性质与判定,解题的关键是熟练掌握全等三角形的判定方法及全等三角形的性质才能很好解决这类问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案