分析 (1)只要证明∠B=90°即可.
(2)如图2中,延长CM、BA交于点E,只要证明△AME≌△DMC,得到AE=CD-4,再证明EN=CN即可解决问题.
(3)如图3中,延长CM、BA交于点E.设BN=x,则BC2=CN2-BN2=CE2-EB2,由此列出方程即可解决问题.
解答 (1)证明:如图1中,
∵AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵AB∥CD,
∴∠B+∠C=180°,
∵∠B=∠C,
∴∠B=∠C=90°,
∴四边形ABCD是矩形.
(2)①如图2中,延长CM、BA交于点E.
∵AN=BN=2,
∴AB=CD=4,
∵AE∥DC,
∴∠E=∠MCD,
在△AEM和△DCM中,
$\left\{\begin{array}{l}{∠E=∠MCD}\\{∠AME=∠CMD}\\{AM=DM}\end{array}\right.$,
∴△AME≌△DMC,
∴AE=CD=4,
∵∠BNC=2∠DCM=∠NCD,
∴∠NCE=∠ECD=∠E,
∴CN=EN=AE+AN=4+2=6.
②如图3中,延长CM、BA交于点E.
由①可知,△EAM≌△CDM,EN=CN,
∴EM=CM=3,EN=CN=4,设BN=x,则BC2=CN2-BN2=CE2-EB2,
∴42-x2=62-(x+4)2,
∴x=$\frac{1}{2}$,
∴BC=$\sqrt{C{N}^{2}-B{N}^{2}}$=$\sqrt{{4}^{2}-(\frac{1}{2})^{2}}$=$\frac{3\sqrt{7}}{2}$.
点评 本题考查矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是添加常用辅助线.构造全等三角形,属于中考考查图形.
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{2}$+1 | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com