【题目】阅读理解:
如图(1),在平面直角坐标系xOy中,已知点A的坐标是(1,2),点B的坐标是(3,4),过点A、点B作平行于x轴、y轴的直线相交于点C,得到Rt△ABC,由勾股定理可得,线段AB=.
得出结论:
(1)若A点的坐标为(x1,y1),B点的坐标为(x2,y2)请你直接用A、B两点的坐标表示A、B两点间的距离;
应用结论:
(2)若点P在y轴上运动,试求当PA=PB时,点P的坐标.
(3)如图(2)若双曲线L1:y=(x>0)经过A(1,2)点,将线段OA绕点O旋转,使点A恰好落在双曲线L2:y=﹣(x>0)上的点D处,试求A、D两点间的距离.
【答案】(1);(2)P(0,5);(3)
【解析】
(1)根据题目提供的两点间的距离公式即可得出结论;
(2)设出点P,根据题目提供的两点间的距离公式表示出PA,PB,最后利用PA=PB建立方程求解即可得出结论;
(3)将点A坐标代入双曲线L1的解析式中,求出k,设出点D的坐标,利用题目提供的两点间距离公式表示出OD,再利用旋转得出OA=OD,建立方程求解,即可得出结论.
解:(1)∵A点的坐标为(x1,y1),B点的坐标为(x2,y2),
∴根据两点间的距离公式得,;
(2)设点P(0,a),
∵A的坐标是(1,2),点B的坐标是(3,4),
∵PA=,PB=,
∵PA=PB,
∴=,
∴a=5,
∴P(0,5);
(3)∵双曲线L1:y=(x>0)经过A(1,2)点,
∴OA=,k=1×2=2,
∴双曲线L1:y=(x>0),双曲线L2:y=﹣(x>0),
设点D坐标为(m,﹣)(m>0),
∴OD=,
由旋转知,OA=OD,
∴=,
∴m=±1或m=±2,
∵m>0,
∴m=1(和点A重合,舍去)或m=2,
∴D(2,﹣1).
∵A(1,2),
∴AD=.
科目:初中数学 来源: 题型:
【题目】如果的对角线相交于点,那么在下列条件中,能判断为菱形的是( )
A. ∠OAB=∠OBA B. ∠OAB=∠OBC
C. ∠OAB=∠OCD D. ∠OAB=∠OAD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1≤x≤5的范围内有解,则t的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一个角是其对角两倍的圆的内接四边形叫做圆美四边形,其中这个角叫做美角已知四边形ABCD是圆美四边形
求美角的度数;
如图1,若的半径为,求BD的长;
如图2,若CA平分,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象如图所示,给出下列结论:①b2>4ac; ②abc<0;③a<b; ④b+c>3a;⑤方程ax2+bx+c=0的两根之和的一半大于﹣1.其中,正确的结论有( )
A. ①②③⑤B. .①②④⑤C. ①②④D. .①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求抛物线的解析式;
(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了估计某地区供暖期间空气质量情况,某同学在20天里做了如下记录:
其中ω<50时空气质量为优,50≤ω≤100时空气质量为良,100<ω≤150时空气质量为轻度污染.若按供暖期125天计算,请你估计该地区在供暖期间空气质量达到良以上(含良)的天数为( )
污染指数(ω) | 40 | 60 | 80 | 100 | 120 | 140 |
天数(天) | 3 | 2 | 3 | 4 | 5 | 3 |
A. 75B. 65C. 85D. 100
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=﹣x2+mx+n与x轴的另一个交点为A,顶点为P.
(1)求3m+n的值;
(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.
(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com