精英家教网 > 初中数学 > 题目详情

已知是实数,则一元二次方程的根的情况是     (    )

A.没有实数根                       B.有两个相等的实数根

C.有两个不相等的实数根             D.根据的值来确定

 

【答案】

C

【解析】

试题分析:先由题意表示出根的判别式△的代数式,即可判断.

由题意得△

则一元二次方程有两个不相等的实数根

故选C.

考点:本题考查的是一元二次方程根的判别式

点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=x2+bx+c的对称轴为直线x=1,且图象与x轴交于A、B两点,AB=2.若关于x的一元二次方程x2+bx+c-t=0(t为实数),在-2<x<
72
的范围内有实数解,则t的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青浦区二模)已知关于x的一元二次方程x2+bx+c=0有两个实数根,则下列关于判别式b2-4c的判断正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宝坻区一模)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a

根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求
x2
x1
+
x1
x2
的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x 0 1 2 3
y 5 2 1 2
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
x1x2=
c
a
.这一结论称为一元二次方程根与系数关系,它的应用很多,请完成下列各题:
(1)应用一:用来检验解方程是否正确.
检验:先求x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

再将你解出的两根相加、相乘,即可判断解得的根是否正确.(本小题完成填空即可)
(2)应用二:用来求一些代数式的值.
①已知:x1、x2是方程x2-4x+2的两个实数根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的两个实数根,求代数式a2+3a+b的值.

查看答案和解析>>

同步练习册答案