在△ABC中,∠ABC=45°,tan∠ACB= .如图,把△ABC的一边BC放置在x轴上,有OB=14,OC= ,AC与y轴交于点E.
(1)求AC所在直线的函数解析式;
(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;
(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
考点: 一次函数综合题。
分析: (1)根据三角函数求E点坐标,运用待定系数法求解;
(2)在Rt△OGE中,运用三角函数和勾股定理求EG,OG的长度,再计算面积;
(3)分两种情况讨论求解:①点Q在AC上;②点Q在AB上.求直线OP与直线AC的交点坐标即可 .
解答: 解:(1)在Rt△OCE中,OE=OCtan∠OCE= = ,∴点E(0,2 ).
设直线AC的函数解析式为y=kx+ ,有 ,解得:k= .
∴直线AC的函数解析式为y= .
(2)在Rt△OGE中,tan∠EOG=tan∠OCE= = ,
设EG=3t,OG=5t,OE= = t,∴ ,得t=2,
故EG=6,OG=10,
∴S△OEG= .
(3)存在.
①当点Q在AC上时,点Q即为点G,
如图1,作∠FOQ的角平分线交CE于点P1,
由△OP1F≌△OP1Q,则有P1F⊥x轴,由于点P1在直线AC上,当x=10时,
y=- = ,
∴点P1(10, ).
②当点Q在AB上时,
如图2,有OQ=OF,作∠FOQ的角平分线交CE于点P2,
过点Q作QH⊥OB于点H,设OH=a,
则BH=QH=14-a,
在Rt△OQH中,a2+(14-a)2=100,
解得:a1=6,a2=8,
∴Q(-6,8)或Q(-8,6).
连接QF交OP2于点M.
当Q(-6,8)时,则点M(2,4).
当Q(-8,6)时,则点M(1,3).
设直线OP2的解析式为y=kx,则
2k=4,k=2.
∴y=2x.
解方程组 ,得 .
∴P2( );
当Q(-8,6)时,则点M(1,3).
同理可求P2′( ).
综上所述,满足条件的P点坐标为(10, )或( )或( ).
点评: 此题考查一次函数的综合应用,运用了分类讨论的数学思想方法,综合性强,难度大.
科目:初中数学 来源: 题型:
3 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com