精英家教网 > 初中数学 > 题目详情
(2010•丽江)如图,一幢楼房前有一棵竹子,楼底到竹子的距离CB为2米,阵风吹过,竹子的顶端恰好到达楼顶,此时测得竹子与水平地面的夹角为75°,求这棵竹子比楼房高出多少米?(精确到0.1米)
(参考数据:sin75°=0.996,cos75°=0.259,tan75°=3.732)

【答案】分析:要求的高度即为AB、AC的差.在Rt△ABC中,运用三角函数定义解直角三角形求AB、AC的值得解.
解答:解:在直角△ABC中,
∵∠ABC=75°,BC=2,
∴AB=≈7.722(米),
AC=BCtan75°=7.464(米).
∴AB-AC=7.722-7.464=≈0.3,
即竹子比楼房高出0.3米.
点评:此题主要考查的是解直角三角形的应用,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:解答题

(2010•丽江)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、B的坐标分别为A(-4,0)、B(-4,2).
(1)现将矩形OABC绕点O顺时针方向旋转90°后得到矩形OA1B1C1,请画出矩形OA1B1C1
(2)画出直线BC1,并求直线BC1的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省临沧中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、B的坐标分别为A(-4,0)、B(-4,2).
(1)现将矩形OABC绕点O顺时针方向旋转90°后得到矩形OA1B1C1,请画出矩形OA1B1C1
(2)画出直线BC1,并求直线BC1的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省丽江中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省迪庆中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2010年云南省大理中考数学试卷(解析版) 题型:解答题

(2010•丽江)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

查看答案和解析>>

同步练习册答案