精英家教网 > 初中数学 > 题目详情

函数y =ax²(a≠0)与直线y =2x-3的图像交于点(1,b).
求:(1)a和b的值;
(2)求抛物线y =ax²的开口方向、对称轴、顶点坐标。

(1) a=-1,b=-1;(2)开口向下,对称轴为y轴,顶点坐标为(0,0).

解析试题分析:(1)将点(1,b)代入直线y=2x-3中可求b,再代入y=ax2中可求a;
(2)根据a的符号判断y=ax2开口方向,对称轴为y轴,顶点坐标为(0,0);
(1)把(1,b)代入直线y=2x-3中,得b=2-3=-1,
把点(1,-1)代入y=ax2中,得a=-1;
(2)∵y=-x2中,a=-1,抛物线开口向下,对称轴为y轴,顶点坐标为(0,0);
考点:1.待定系数法求二次函数解析式;2.二次函数的图象;3.二次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知抛物线与x轴交于点、C,与y轴交于点B(0,3),抛物线的顶点为p。
(1)求抛物线的解析式;
(2)若抛物线向下平移k个单位后经过点(-5,6)。
①求k的值及平移后抛物线所对应函数的最小值;
②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点。请探究:当点M在何处时,△MBD的而积是△MPQ面积的2倍?求出此时点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

平面直角坐标系中,抛物线轴于A、B两点(点A在点B左侧),与轴交于点C,点A、C的坐标分别为(-3,0),(0,3),对称轴直线轴于点E,点D为顶点.
(1)求抛物线的解析式;
(2)点P是直线AC下方的抛物线上一点,且,,求点P的坐标;
(3)点M是第一象限内抛物线上一点,且∠MAC=∠ADE,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

平面直角坐标第xoy中,A点的坐标为(0,5).B、C分别是x轴、y轴上的两个动点,C从A出发,沿y轴负半轴方向以1个单位/秒的速度向点O运动,点B从O出发,沿x轴正半轴方向以1个单位/秒的速度运动.设运动时间为t秒,点D是线段OB上一点,且BD=OC.点E是第一象限内一点,且AEDB.
(1)当t=4秒时,求过E、D、B三点的抛物线解析式.
(2)当0<t<5时,(如图甲),∠ECB的大小是否随着C、B的变化而变化?如果不变,求出它的大小.
(3)求证:∠APC=45°
(4)当t>5时,(如图乙)∠APC的大小还是45°吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.

(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,等边△ABC边长为6,P为BC边上一点,且BP=4,点E、F分别在边AB、AC上,且∠EPF=60°,设BE=x,CF=y.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)①若四边形AEPF的面积为时,求x的值.
②四边形AEPF的面积是否存在最大值?若存在,请求出面积的最大值及此时x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

同步练习册答案