精英家教网 > 初中数学 > 题目详情

如图,己知抛物线y=x2+px+q与x轴交于A、B两点,∠ACB=90°,交y轴负半轴于C点,点B在点A的右侧,且数学公式
(1)求抛物线的解析式,
(2)求△ABC的外接圆面积;
(3)设抛物线y=x2+px+q的顶点为D,求四边形ACDB的面积;
(4)在抛物线y=x2+px+q上是否存在点P,使得△PAB的面积为2数学公式?如果有,这样的点有几个?写出它们的坐标;如果没有,说明理由.

解:(1)设A点横坐标为x1、B点横坐标x2
由射影定理得-x1•x2=q2①,
由韦达定理得
x1•x2=q,x1+x2=-p,
又因为-=
所以=②,
将x1•x2=q代入-x1•x2=q2
得,-q=q2,解得q=-1或q=0(不合题意,舍去).
将x1•x2=q,x1+x2=-p代入=
得,=,p=-2,于是抛物线的解析式y=x2-2x-1.

(2)令y=0,所以x2-2x-1=0,
解得x1=1-,x2=1+
所以AB=x2-x1=(1+-1+)=2
∴△ABC的外接圆的半径=
∴△ABC的外接圆的面积=π(2=2π.

(3)因为抛物线y=x2-2x-1的顶点坐标为(1,-2),作DE⊥AB于E,
所以四边形ACDB的面积=S△ACO+S△DEB+S梯形COED=++=+1.

(4)AB=2
要使△PAB的面积为2,只需P点到x轴即AB所在直线的距离为2.
∴P点的纵坐标为2或-2,代入y=x2-2x-1得:
∴P点的坐标为(3,2),(-1,2),(1,-2).
分析:(1)由于∠ACB=90°,所以可由射影定理和韦达定理求抛物线的解析式;
(2)求出函数与x轴的交点坐标,计算出AB的值,便可求出半径得到圆的面积;
(3)将四边形的面积转化为S△ACO+S△DEB+S梯形COED
(4)由于底边值固定,找到高相同的三角形即可.
点评:解答此题的关键是求出二次函数解析式,然后根据二次函数的性质以及其图象上点的坐标特征解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,己知抛物线y=x2+px+q与x轴交于A、B两点,∠ACB=90°,交y轴负半轴于C点,点B在点A的右侧,且
1
OA
-
1
OB
=
2
OC

(1)求抛物线的解析式,
(2)求△ABC的外接圆面积;
(3)设抛物线y=x2+px+q的顶点为D,求四边形ACDB的面积;
(4)在抛物线y=x2+px+q上是否存在点P,使得△PAB的面积为2
2
?如果有,这样的点有几个?写精英家教网出它们的坐标;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(48):27.3 实践与探索(解析版) 题型:解答题

如图,己知抛物线y=x2+px+q与x轴交于A、B两点,∠ACB=90°,交y轴负半轴于C点,点B在点A的右侧,且
(1)求抛物线的解析式,
(2)求△ABC的外接圆面积;
(3)设抛物线y=x2+px+q的顶点为D,求四边形ACDB的面积;
(4)在抛物线y=x2+px+q上是否存在点P,使得△PAB的面积为2?如果有,这样的点有几个?写出它们的坐标;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(46):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,己知抛物线y=x2+px+q与x轴交于A、B两点,∠ACB=90°,交y轴负半轴于C点,点B在点A的右侧,且
(1)求抛物线的解析式,
(2)求△ABC的外接圆面积;
(3)设抛物线y=x2+px+q的顶点为D,求四边形ACDB的面积;
(4)在抛物线y=x2+px+q上是否存在点P,使得△PAB的面积为2?如果有,这样的点有几个?写出它们的坐标;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年广东省深圳市中考数学信息卷(二)(解析版) 题型:解答题

如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3).
(1)求抛物线的解析式;
(2)如图(1),己知点H(0,-1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(2),抛物线上点D在x轴上的正投影为点E(-2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

查看答案和解析>>

同步练习册答案