精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1,设CB1交AB于D,AlB1分别交AB、AC于E、F。
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C全等除外);
(2)当△BB1D是等腰三角形时,求α;
(3)当α=60°时,求BD的长。
解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF等
以证△CBD≌△CA1F为例
证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°
∴∠A1CF=∠BCD
∵A1C=BC
∴∠A1=∠CBD=45°
∴△CBD≌△CA1F(答案不唯一);
(2)在△CBB1
∵CB=CB1
∴∠CBB1=∠CB1B=(180°-α)
又△ABC是等腰直角三角形
∴∠ABC=45°
①若B1B=B1D,则∠B1DB=∠B1BD
∵∠B1DB=45°+α
∠B1BD=∠CBB1-45°=(180°-α)-45°=45°-
∴45°+α=45°-
∴α=0°(舍去);
②∵∠BB1C=∠B1BC>∠B1BD
∴BD>B1D,即BD≠B1D
③若BB1=BD,则∠BDB1=∠BB1D,即45°+α=(180°-α),α=30°
由①②③可知,当△BB1D为等腰三角形时,α=30°;
(3)作DG⊥BC于G,设CG=x
在Rt△CDG中,∠DCG=α=60°
∴DG=xtan60°=x
Rt△DGB中,∠DBG=45°,∴BG=GD=x
∵AC=BC=1,∴x+x=1
x=
∴DB=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案