精英家教网 > 初中数学 > 题目详情
17.定义:如果二次函数y1=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y2=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求y=-x2+3x-2函数的“旋转函数”.小明是这样思考的:由y=-x2+3x-2函数可知a1=-1,b1=3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面的问题:
(1)写出函数y=-x2+3x-2的“旋转函数”;
(2)若函数y1=x2-$\frac{4n}{3}$x+n与y2=-x2+mx-3互为“旋转函数”,求(m+n)2016的值;
(3)已知函数y=2(x+1)(x-4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,请指出经过点A1、B1、C1的二次函数与y=2(x+1)(x-4)是否互为“旋转函数”.填是 (是或不是).

分析 (1)根据“旋转函数”的定义求出a2,b2,c2,从而得到原函数的“旋转函数”;
(2)根据“旋转函数”的定义得到-$\frac{4n}{3}$=m,-3+n=0,再解方程组求出m和n的值,然后根据乘方的意义计算;
(3)先根据抛物线与坐标轴的交点问题确定A(-1,0),B(4,0),C(0,-8),再利用关于原点对称的点的坐标特征得到A1(1,0),B1(-4,0),C1(0,8),则可利用交点式求出经过点A1,B1,C1的二次函数解析式为y=-2(x-1)(x+4)=-2x2-6x+8,再把y=2(x+1)(x-4)化为一般式,然后根据“旋转函数”的定义进行判断

解答 (1)解:∵a1=-1,b1=3,c1=-2,
∴-1+a2=0,b2=3,-2+c2=0,
∴a2=1,b2=3,c2=2,
∴函数y=-x2+3x-2的“旋转函数”为y=x2+3x+2;
(2)解:根据题意得-$\frac{4n}{3}$=m,-3+n=0,解得m=-4,n=3,
∴(m+n)2016=(-4+3)2016=1;
(3)解:当x=0时,y=2(x+1)(x-4)=-8,则C(0,-8),
当y=0时,2(x+1)(x-4)=0,解得x1=-1,x2=4,则A(-1,0),B(4,0),
∵点A、B、C关于原点的对称点分别是A1,B1,C1
∴A1(1,0),B1(-4,0),C1(0,8),
设经过点A1,B1,C1的二次函数解析式为y=a2(x-1)(x+4),把C1(0,8)代入得a2•(-1)•4=8,解得a2=-2,
∴经过点A1,B1,C1的二次函数解析式为y=-2(x-1)(x+4)=-2x2-6x+8,
而y=2(x+1)(x-4)=2x2-6x-8,
∴a1+a2=2+(-2)=0,b1=b2=-6,c1+c2=0,
∴经过点A1、B1、C1的二次函数与函数y=2(x+1)(x-4)互为“旋转函数”.
故答案为:是.

点评 此题是二次函数综合题,熟练掌握关于原点对称的两点的坐标特征;会求二次函数图象与坐标轴的交点和待定系数法求二次函数解析式;对新定义的理解能力.解题的关键是抓住互为“旋转函数”的定义,利用函数各多项式前面的系数解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.1-6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如表所示,则6个月大的婴儿的体重为(  )
月龄/(月)12345
体重/(克)47005400610068007500
A.7600克B.7800克C.8200克D.8500克

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.顾琪在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是她在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

(1)顾琪总共剪开了8条棱.
(2)现在顾琪想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为她应该将剪断的纸条粘贴到①中的什么位置?请你帮助她在①上补全.
(3)已知顾琪剪下的长方体的长、宽、高分别是6cm、6cm、2cm,求这个长方体纸盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,长方形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC,且$\sqrt{AB-4}$+|BC-6|=0,点P、Q分别是边AD、AB上的动点.
(1)求BD的长;
(2)如图2,在P、Q运动中是否能使△CPQ成为等腰直角三角形?若能,请求出PA的长;若不能,请说明理由;
(3)如图3,在BC上取一点E,使EC=5,那么当△EPC为等腰三角形时,请直接写出PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=$\sqrt{2}$;⑤S四边形CDEF=$\frac{5}{2}$S△ABF,其中正确的结论有①②③⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.我们把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,A、B、C、D分别是某蛋圆和坐标轴的交点其中抛物线的解析式为y=x2-2x-3,则“蛋圆”的弦CD的长为3+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在△ABC中,AB=AC,BE=CM,BM=CF,∠EMF=50°,则∠A=80度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(-2,0),
B(4,0)与y轴交于点C.
(Ⅰ)求抛物线的解析式及其顶点D的坐标;
(Ⅱ)求△BCD的面积;
(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读材料:如图1,在平面直角坐标系中,以坐标平面内任意一点M(a,b)为圆心,半径为r作圆,点P(x,y)在⊙M上,则必有(x-a)2+(y-b)2=r2
尝试证明:为了证明阅读材料上的结论,小明作了辅助线:过点M和点P分别作x轴、y轴的平行线,两平行线交于点N可得点N的坐标是(x,b)(用字母表示),完成小明的证明过程.
结论应用:如图2,点A、B、C均在坐标轴上,OB=OC=OA=4,过A、O、B作⊙D,E是⊙D上任意一点,连接CE,BE.
(1)当线段CE经过点D时,求点E的坐标;
(2)在点E的运动过程中,线段CE和线段BE的长度随之变化,试求CE2+BE2的最大值和最小值.

查看答案和解析>>

同步练习册答案