精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,以AD为边作正方形ADEF,连结CFCE

(1)求证:△ABD≌△ACF;

(2)如果BD=AC,求证:CD=CE

【答案】(1)证明见解析;(2)证明见解析

【解析】试题分析:1)根据正方形的性质得出 求出证出
2)根据△ABD≌△ACF,推出,求出 根据SAS推出△DAC≌△EFC即可.

试题解析:证明:(1∵四边形ADEF是正方形,
AD=AFFAD=90°=BAC
∴∠FAD-DAC=BAC-DAC
∴∠FAC=BAD
在△ABD和△ACF

∴△ABD≌△ACFSAS),


2∵△ABD≌△ACF
BD=CF
BD=AC
AC=CF
∴∠CAF=CFA
∵四边形ADEF是正方形,
AD=EFDAF=EFA=90°
∴∠DAF-CAF=EFA-CFA
∴∠DAC=EFC
在△DAC和△EFC

∴△DAC≌△EFCSAS),
CD=CE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A是双曲线y= (x>0)上一点,过点A作AB∥y轴,交双曲线y=﹣ (x>0)于点B,过点B作BC⊥AB交y轴于点C,连接AC,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.

(1)求证:DEF是等腰三角形;

(2)当∠A=40°时,求∠DEF的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EABCD的边CD的中点,延长AEBC的延长线于点F

1)求证:△ADE≌△FCE

2)若∠BAF=90°BC=10EF=6,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y= 的图象在第一象限内的交点为M,若△OBM的面积为1.

(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;
(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.

(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:

图形

顶点数(V)

边数(E)

区域数(F)

(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;

(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上任一点,射线OD和射线OE分别平分AOCBOC

(1)填空:与AOE互补的角是

(2)若AOD=36°,求DOE的度数;

(3)当AOD=x°时,请直接写出DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、20、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张。(转盘等分成20)

(1)小华购物450,他获得购物券的概率是多少?

(2)小丽购物600,那么她获得100元以上(包括100)券的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米。

1)这个梯子的顶端离地面有多高?

2如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?

查看答案和解析>>

同步练习册答案