精英家教网 > 初中数学 > 题目详情
已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;
(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;
(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).

【答案】分析:(1)D恰是AB的中点时,则AD是AB的中垂线,则CA=CB,易证∠CAE=∠CBF,则易证△CAE≌△CBF,得到∠ACE=∠BCF;
(2)连接BE、AF,则易证△CDB≌△BAE,则△BCE和△ACF都是等腰直角三角形,则∠ACF=∠ECB=45°,即可证得:∠ACE=∠BCF;
(3)根据∠ACF=∠ECB=45°,再依据∠ECF=∠ACF-∠ACE=∠ACF-(∠ACB-∠BCE)即可求解.
解答:(1)猜想:∠ACE=∠BCF.
证明:∵D是AB中点,
∴AD=BD,
又∵AE=BD,BF=AD,
∴AE=BF.
∵CD⊥AB,AD=BD,
∴CA=CB.
∴∠1=∠2.
∵AE⊥AB,BF⊥AB,
∴∠3=∠4=90°.
∴∠1+∠3=∠2+∠4.
即∠CAE=∠CBF.
∴△CAE≌△CBF.
∴∠ACE=∠BCF.…(2分)

(2)∠ACE=∠BCF仍然成立.
证明:连接BE、AF.
∵CD⊥AB,AE⊥AB,
∴∠CDB=∠BAE=90°.
又∵BD=AE,CD=AB,
△CDB≌△BAE.…(3分)
∴CB=BE,∠BCD=∠EBA.
在Rt△CDB中,∵∠CDB=90°,
∴∠BCD+∠CBD=90°.
∴∠EBA+∠CBD=90°.
即∠CBE=90°.
∴△BCE是等腰直角三角形.
∴∠BCE=45°. …(4分)
同理可证:△ACF是等腰直角三角形.
∴∠ACF=45°. …(5分)
∴∠ACF=∠BCE.
∴∠ACF-∠ECF=∠BCE-∠ECF.
即∠ACE=∠BCF.…(6分)

(3)∠ECF的度数为90°-α.…(7分)
点评:本题考查了三角形全等的判定,正确证明△BCE和△ACF都是等腰直角三角形是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知,如图,C为线段AB的中点,CD平分∠ACE,CE平分∠BCD,且CD=CE,求证:AD=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•顺义区二模)已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;
(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;
(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点为线段上一点,是等边三角形,可以说明:,从而得到结论:.现要求:

(1)将点按逆时针方向旋转180°,使点落在上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).

(2)在(1)所得到的图形中,结论“”是否还成立?若成立,请给予证明;若不成立,请说明理由.

(3)在(1)所得到的图形中,设的延长线与相交于点,请你判断△ABD与四边形的形状,并说明你的结论的正确性.

 


查看答案和解析>>

科目:初中数学 来源:2011年江苏省南京市外国语学校中考数学一模试卷(解析版) 题型:解答题

已知,如图,C为线段AB的中点,CD平分∠ACE,CE平分∠BCD,且CD=CE,求证:AD=BE.

查看答案和解析>>

同步练习册答案