精英家教网 > 初中数学 > 题目详情
(2012•抚顺)如图,已知一次函数y=-
1
2
x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.
(1)求此一次函数的解析式;
(2)设点P为直线y=-
1
2
x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=
5
4
S△AOB,求点P的坐标.
分析:(1)直接把点A(2,3)代入一次函数y=-
1
2
x+b即可求出b的值,进而得出一次函数的解析式;
(2)设P(p,d),p>0,再根据点P在一次函数的图象上及S△POQ=
5
4
S△AOB,即可得出关于p、d的方程组,求出p、d的值即可.
解答:解:(1)∵一次函数y=-
1
2
x+b的图象经过点A(2,3),
∴3=(-
1
2
)×2+b,
解得b=4,
故此一次函数的解析式为:y=-
1
2
x+4;

(2)设P(p,d),p>0,
∵点P在直线y=-
1
2
x+4的图象上,
∴d=-
1
2
p+4①,
∵S△POQ=
5
4
S△AOB=
5
4
×
1
2
×2×3,
1
2
pd=
15
4
②,
①②联立得,
d=-
1
2
p+4
1
2
pd=
15
4

解得
p=3
d=
5
2
p=5
d=
3
2

∴P点坐标为:(3,
5
2
)或(5,
3
2
).
点评:本题考查的是用待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•抚顺)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.
(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;
(2)当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段CD的长度;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,是五个相同的小正方体搭成的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,小浩从二次函数y=ax2+bx+c(a≠0)的图象中得到如下信息:
①ab<0     
②4a+b=0    
③当y=5时只能得x=0   
④关于x的一元二次方程ax2+bx+c=10有两个不相等的实数根,
你认为其中正确的有(  )

查看答案和解析>>

同步练习册答案