【题目】如图,点 A、B 在数轴上表示的数分别为﹣12 和 8,两只蚂蚁 M、N 分别 从 A、B 两点同时出发,相向而行.M 的速度为 2 个单位长度/秒,N 的速度为 3 个单位长度/秒.
(1)运动 秒钟时,两只蚂蚁相遇在点 P;点 P 在数轴上表示的数 是 ;
(2)若运动 t 秒钟时,两只蚂蚁的距离为 10,求出 t 的值(写出解题过程).
【答案】(1)4;-4;(2)2 或 6.
【解析】试题分析:(1)利用两蚂蚁的速度表示出行驶的路程,进而得出等式求出即可;
(2)分别利用在相遇之前距离为10和在相遇之后距离为10,求出即可.
试题解析:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:
2x+3x=8-(-12),
解得:x=4,
-12+2×4=-4.
答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:-4;
(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,
若在相遇之前距离为10,则有2t+3t+10=20,
解得:t=2.
若在相遇之后距离为10,则有2t+3t-10=20,
解得:t=6.
综上所述:t的值为2或6.
科目:初中数学 来源: 题型:
【题目】正方形中,点是直线上的一个动点,连接,将线段绕点顺时针旋转得到线段,连接.
(1)如图1,若点在线段上,
①直接写出的度数为 °;
②求证:;
(2)如图2,若点在的延长线上,,,
①依题意补全图2;
②直接写出线段的长度为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知的两边、的长分别是关于x的一元二次方程的两个实数根,第三边的长为5.
(1)当为何值时, 是直角三角形;
(2)当为何值时, 是等腰三角形,并求出的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.
探究:试判断BE和CN的位置关系和数量关系,并说明理由.
应用:Q是线段BC的中点,若BC=6,则PQ= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】4月初某地猪肉价格大幅度下调,下调后每千克猪肉的价格是原价格的,原来用120元买到的猪肉下调后可多买2kg.4月中旬猪肉价格开始回升,经过两个月后,猪肉价格上调为每千克28.8元.
(1)求4月初猪肉价格下调后变为每千克多少元.
(2)求5、6月份猪肉价格的月平均增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)试说明:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当∠BOC为多少度时,△AOD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,在平面直角坐标系中,点A在y轴正半轴上,点B、C分别在x轴的负半轴、正半轴上,且AB=AC,∠ACB=30°,OD⊥AB于点D.
(1)求证:BD=3AD;
(2)如图2,点E在OD的延长线上,连接BE,在线段BE上取点F,连接CF分别交OE、AB于点G、H(点G、H、D互不重合),若FE=FG,求证:∠EBA﹣∠BCF的度数为定值;
(3)如图3,在(2)的条件下,连接EC,若C(4,0),A(0,4),求S△ECG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB<BC,以点A为圆心,AB长为半径作圆弧交AD于点F,再分别以点B、F为圆心,大于BF的一半长为半径作圆弧,两弧交于一点P,连结AP并延长交BC于点E,连结EF.
(1)四边形ABEF是_____(填“矩形”、“菱形”、“正方形”或“无法确定”)(直接填写结果),并证明你的结论.
(2)AE、NF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为_____,∠ADC=_____°,(直接填写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com