精英家教网 > 初中数学 > 题目详情
当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是(  )
分析:本题应对代数式进行化简,得出含有x-y的式子,再将x-y=1代入即可.
解答:解:x4-xy3-x3y-3x2y+3xy2+y4
=(x4-xy3)+(y4-x3y)+(3xy2-3x2y)
=x(x3-y3)+y(y3-x3)+3xy(y-x)
=(x3-y3)(x-y)-3xy(x-y)
=(x-y)(x3-y3-3xy)
=(x-y)[(x-y)(x2+xy+y2)-3xy]
=1×[1×(x2+xy+y2)-3xy]
=x2-2xy+y2=(x-y)2
∵x-y=1,
∴原式=1.
故选C.
点评:本题考查了因式分解的应用;解题的关键是整体代换的思想.
练习册系列答案
相关习题

科目:初中数学 来源:数学教研室 题型:022

y1x成正比例,且当x=2时,y=4,那么yx之间的函数关系式为________

 

查看答案和解析>>

科目:初中数学 来源: 题型:022

y1x成正比例,且当x=2时,y=4,那么yx之间的函数关系式为________.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是


  1. A.
    -1
  2. B.
    0
  3. C.
    1
  4. D.
    2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案