【题目】如图,过边长为1的等边△ABC的边AB上一点P作PE⊥AC于点E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC于点D,则DE的长为( )
A.B.C.D.
【答案】B
【解析】
过P点作PF∥BC于F,得出等边△APF,借此证明出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,进而证明出DE=AC即可.
如图,过P点作PF∥BC于F,
∵PF∥BC,且△ABC为等边三角形,
∴∠PFD=∠QCD,△APF为等边三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ,
在△PFD与△QCD中:
∵∠PFD=∠QCD,∠PDF=∠QDC,PF=CQ,
∴△PFD≌△QCD,
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE=AC,
∵AC=1,
∴DE=.
所以答案为B选项.
科目:初中数学 来源: 题型:
【题目】商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价元。据此规律,请回答:
(1)商场日销售量增加_____件,每件商品盈利_____元(用含的代数式表示)。
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在RtΔABC中,∠C=90, BC=6cm, AC=8cm,如果按图中所示方法将ΔBCD沿BD折叠,使点C落在边AB上的点C'处,那么ΔADC'的周长是________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B地后,快递车再行驶_____h到达A地.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,等腰三角形纸片,AB=AC,∠BAC=30°,按图2将纸片沿DE折叠,使得点A与点B重合,此时∠DBC= ;
(2)在(1)的条件下,将△DEB沿直线BD折叠,点E恰好落在线段DC上的点E′处,如图3,此时∠E′BC= ;
(3)若另取一张等腰三角形纸片ABC,AB=AC,沿直线DE折叠(点D,E分别为折痕与直线AC,AB的交点),使得点A与点B重合,再将所得图形沿直线BD折叠,使得E落在点E′的位置,直线BE′与直线AC交于点M.设∠BAC=m°(m<90°)画出折叠后的图形,并直接写出对应的∠MBC的大小.(用含m的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com