ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ

Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬

½âµÃy1£½1£¬y2£½4£®µ±y£½1ʱ£¬x2£­1£½1£¬

¡àx2£½2£¬

¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬

¡àx2£½5£¬

¡àx£½¡À£¬

¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®

ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»

ÇëÀûÓû»Ôª·¨½â·½³Ì£º(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0

 

¡¾´ð°¸¡¿

¡¾½âÎö¡¿

ÊÔÌâ·ÖÎö£ºÉ裬ÔòÔ­·½³Ì¿É»¯Îª

½âµÃ

ûÓÐʵÊý¸ù

½âµÃ

¹ÊÔ­·½³ÌµÄ½âΪ

¿¼µã£º½âÒ»ÔªÒ»´Î·½³Ì

µãÆÀ£º½â´ð±¾ÌâµÄ¹Ø¼üÊǶÁ¶®ÌâÒ⣬׼ȷÀí½âÔËËã·ûºÅ¡°¡÷¡±µÄÔËËã˳Ðò£¬ÕýÈ·Áгö·½³Ì.

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ
Ϊ½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2-1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉèx2-1=y£¬ÄÇôԭ·½³Ì¿É»¯Îªy2-5y+4=0£¬½âµÃy1=1£¬y2=4£®µ±y=1ʱ£¬x2-1=1£¬¡àx2=2£¬¡àx=¡À
2
£»µ±y=4ʱ£¬x2-1=4£¬¡àx2=5£¬¡àx=¡À
5
£¬¹ÊÔ­·½³ÌµÄ½âΪx1=
2
£¬x2=-
2
£¬x3=
5
£¬x4=-
5
£®
ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»ÇëÀûÓû»Ôª·¨½â·½³Ì£®£¨x2-x£©2-4£¨x2-x£©-12=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£¬½â´ðÎÊÌ⣺
²ÄÁÏ£ºÔڽⷽ³Ìx4-2x2-8=0ʱ£¬ÎÒÃÇ¿ÉÒÔ½«x2¿´³ÉÒ»¸öÕûÌ壬ȻºóÉèx2=y£¬Ôòx4=y2£®Ô­·½³Ì¿É»¯Îªy2-2y-8=0£¬½âµÃy=4»òy=-2
µ±y=4ʱ£¬x2=4£¬ËùÒÔx=2»òx=-2
µ±y=-2ʱ£¬x2=-2£¬´Ë·½³ÌÎÞ½â
ËùÒÔÔ­·½³ÌµÄ½âΪx1=2£¬x2=-2
ÎÊÌ⣺Çë²ÎÕÕÉÏÊö½â·¨½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ

Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬½âµÃy1£½1£¬y2£½4£®

µ±y£½1ʱ£¬x2£­1£½1£¬¡àx2£½2£¬¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬¡àx2£½5£¬¡àx£½¡À£¬

¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®

ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»

ÇëÀûÓû»Ôª·¨½â·½³Ì£®(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0    

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2013½ì¸£½¨Ê¡³¤Í¡ÏسÇÇøÎåУ¾ÅÄ꼶µÚÒ»´ÎÔ¿¼Áª¿¼ÊýѧÊÔ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ
Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬
½âµÃy1£½1£¬y2£½4£®µ±y£½1ʱ£¬x2£­1£½1£¬
¡àx2£½2£¬
¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬
¡àx2£½5£¬
¡àx£½¡À£¬
¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®
ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»
ÇëÀûÓû»Ôª·¨½â·½³Ì£º(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012½ìɽ¶«Ê¡ÎÞé¦ÏØʮУÁª¿¼¾ÅÄ꼶ÉÏѧÆÚÆÚÖÐÊýѧÊÔ¾í ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæ²ÄÁÏ£º½â´ðÎÊÌâ

Ϊ½â·½³Ì (x2£­1)2£­5 (x2£­1)£«4£½0£¬ÎÒÃÇ¿ÉÒÔ½«£¨x2£­1£©¿´×÷Ò»¸öÕûÌ壬ȻºóÉè x2£­1£½y£¬ÄÇôԭ·½³Ì¿É»¯Îª  y2£­5y£«4£½0£¬½âµÃy1£½1£¬y2£½4£®

µ±y£½1ʱ£¬x2£­1£½1£¬¡àx2£½2£¬¡àx£½¡À£»µ±y£½4ʱ£¬x2£­1£½4£¬¡àx2£½5£¬¡àx£½¡À£¬

¹ÊÔ­·½³ÌµÄ½âΪ  x1£½£¬x2£½£­£¬x3£½£¬x4£½£­£®

ÉÏÊö½âÌâ·½·¨½Ð×ö»»Ôª·¨£»

ÇëÀûÓû»Ôª·¨½â·½³Ì£®(x 2£­x)2 £­ 4 (x 2£­x)£­12£½0  

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸