精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧 (不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为(  )
A.r
B. ?r
C.2r
D. ?r

【答案】C
【解析】解:连接OD、OE, ∵⊙O是Rt△ABC的内切圆,
∴OD⊥AB,OE⊥BC,
∵∠ABC=90°,
∴∠ODB=∠DBE=∠OEB=90°,
∴四边形ODBE是矩形,
∵OD=OE,
∴矩形ODBE是正方形,
∴BD=BE=OD=OE=r,
∵⊙O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,
∴MP=DM,NP=NE,
∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,
故选C.

【考点精析】根据题目的已知条件,利用切线长定理和矩形的判定方法的相关知识可以得到问题的答案,需要掌握从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) ①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题. 点B与⊙O的位置关系是;(直接写出答案)
(3)若DE=2,AC=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,直线y= x+6与x轴、y轴分别交于点A、C两点,点B的横坐标为2.
(1)求A、C两点的坐标和抛物线的函数关系式;
(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且SPCD=2SPAD , 求点P的坐标;
(3)如图2,另有一条直线y=﹣x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】,②,③三对数值中________是方程x+y=3的解________是方程3x+2y=5的解________是方程组的解.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB:BC=3:4,AC=5,点P从点A出发,以每秒1个单位的速度,沿△ABCA→B→C→A的方向运动,运动时间为t秒.

(1)ABBC的长;

(2)在点P的运动过程中,是否存在这样的点P,使△CDP为等腰三角形?若存在,求出t值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图CD在线段ABD是线段AB的中点AC=AD CD=4 ,求线段AB的长

(2)如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )

A. A与D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小明在自家楼顶上的点A处测量建在与小明家楼房同一水平线上邻居的电梯的高度,测得电梯楼顶部B处的仰角为45°,底部C处的俯角为26°,已知小明家楼房的高度AD=15米,求电梯楼的高度BC(结果精确到0.1米)(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)

查看答案和解析>>

同步练习册答案