精英家教网 > 初中数学 > 题目详情
如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.求证:PB是⊙O的切线.
证明:连接OB,
∵PA切⊙O于A,
∴∠PAO=90°,
∵∠BAC=90°,弧BC对的圆周角是∠BAC,对的圆心角是∠COB,
∴∠COB=2∠BAC=60°,
∴∠AOB=180°-60°=120°,
∵∠APB=60°,
∴在四边形AOBP中,∠PBO=360°-90°-60°-120°=90°,
即OB⊥PB,
∵OB是半径,
∴PB是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC边的中点,连接DE.
(1)求证:DE与⊙O相切;
(2)若⊙O的半径为
3
,DE=3,求AE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.
(1)求证:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过D作DE⊥AC交BA的延长线于点F,E为垂足.
(1)求证:DF为⊙O的切线;
(2)若AB=6,DF=4,求FA的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:射线OF交⊙O于点B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.
(1)图a是点P在圆内移动时符合已知条件的图形,请你在图b中画出点P在圆外移动时符合已知条件的图形;
(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较,写出一条与△DPE的边、角或形状有关的规律;
(3)在点P移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H,若OH=2,AB=12,BO=13.求:
(1)⊙O的半径;
(2)sin∠OAC的值;
(3)弦AC的长(结果保留含有根号的式子).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,∠A=60°,BC=6,它的周长为16.若⊙O与BC,AC,AB三边分别切于E,F,D点,则DF的长为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC是弦,D是
BC
的中点,过点D作AC的延长线的垂线DP,垂足为P.若PD=12,PC=8,求⊙O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于(  )
A.
3
2
B.
2
2
C.
2
3
3
D.
2

查看答案和解析>>

同步练习册答案