精英家教网 > 初中数学 > 题目详情
6.(1)某校有A、B两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐,求三位同学在相同食堂就餐的概率.
(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概率是$\frac{1}{8}$.

分析 (1)此题需要三步完成;因为有三名学生选择餐厅,可以看做需三次完成的事件,所以需要采用树状图法,再根据概率公式计算可得;
(2)由乘法公式可得共有2×2×2×2=16(种)等可能的结果,其中甲、乙、丙、丁四位同学互不相遇的有2种情况,然后利用概率公式求解即可求得答案.

解答 解:(1)画树状图得:

由树状图可知共有8种等可能结果,其中甲、乙、丙三名学生在同一个餐厅用餐有2种结果,
∴甲、乙、丙三名学生在同一个餐厅用餐的概率为$\frac{2}{8}$=$\frac{1}{4}$;
(2)∵甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A、B、C、D处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,共有2×2×2×2=16(种)等可能的结果,其中甲、乙、丙、丁四位同学互不相遇的有2种情况,
∴甲、乙、丙、丁四位同学互不相遇的概率是$\frac{2}{16}$=$\frac{1}{8}$,
故答案为:$\frac{1}{8}$.

点评 本题考查的是用列表法或画树状图法求概率,树状图法适用于两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:
某校师生捐书种类情况统计表
种类频数百分比
A.科普类12n
B.文学类1435%
C.艺术类m20%
D.其它类615%
(1)统计表中的m=8,n=30%;
(2)补全条形统计图;
(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=$\frac{k}{x}$(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为(  )
A.(5,8)B.(5,10)C.(4,8)D.(3,10)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某校号召全校组件课外兴趣小组,学生会统计了某学期2-6月新注册的兴趣小组的数量,并将结果绘制成如下两种不完整的统计图:

(1)某学期2-6月新注册的兴趣小组一共有16个,请将折线图补充完整;
(2)4月新注册的小组中,有2个是绘画小组,现从4月新注册的小组中随机抽取2个小组了解其开展活动的情况,请你求出所抽取的2个小组恰好都是绘画的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,已知点B,D在反比例函数y=$\frac{a}{x}$(a>0)的图象上,点A,C在反比例函数y=$\frac{b}{x}$(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的同侧,AB=4,CD=3,AB与CD的距离为1,则a-b的值是12.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为$\sqrt{3}$的线段的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在反比例函数y=$\frac{1-3m}{x}$图象上有两点A(1,y1),B(2,y2),且y1>y2,则m的取值范围是(  )
A.m$>\frac{1}{3}$B.m$<\frac{1}{3}$C.m$≥\frac{1}{3}$D.m$≤\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的二次函数y=x2+(2k-1)x+k2-1,且关于x的方程x2+(2k-1)x+k2-1=0的两根的平方和等于9.
(1)求函数的解析式.
(2)设这个二次函数的图象与x轴从左至右分别交于AB两点,在图7所给的平面直角坐标系中画出函数的大致图象,点M是位于对称轴右侧函数图象上的一点,且锐角△AMB的面积的等于3,求点M的坐标.
(3)在(2)的条件下,过点M及点E($\frac{8}{3}$,0)的直线与抛物线交于点P,求证:△AMP是直角三角形,并求△AMP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大的为本局获胜,每次取的牌不能放回.
(1)若每人随机取手中的一张牌进行比赛,请列举出所有情况,并求学生乙本局获胜的概率;
(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当学生甲的三张牌出牌顺序为先出6,再出8,最后出10时,学生乙随机出牌应对,求学生乙本次比赛获胜的概率.

查看答案和解析>>

同步练习册答案