【题目】如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,3).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由.
【答案】(1)k=;(2)S=×3×(﹣x)=﹣x(﹣8<x<0);(3)P坐标为(﹣,).
【解析】
试题分析:(1)把E的坐标为(﹣8,0)代入y=kx+6中即可求出k的值;
(2)如图,OA的长度可以根据A的坐标求出,PE就是P的横坐标的相反数,那么根据三角形的面积公式就可以求出△OPA的面积S与x的函数关系式,自变量x的取值范围可以利用点P(x,y)是第二象限内的直线上的一个动点来确定;
(3)可以利用(2)的结果求出P的横坐标,然后就可以求出P的纵坐标.
解:(1)∵直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),
∴0=﹣8k+6,
∴k=;
(2)如图,过P作PH⊥OA于H,
∵点P(x,x+6)是第二象限内的直线上的一个动点,
∴PH=|x|=﹣x,
而点A的坐标为(0,3),
∴S=×3×(﹣x)=﹣x(﹣8<x<0);
(3)当S=时,x=﹣,
∴y=.
∴P坐标为(﹣,).
科目:初中数学 来源: 题型:
【题目】甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:
(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;
(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2-2b+3,若将实数对(x,-2x)放入其中,得到一个新数为8,则x=___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知, ∥, ,试解答下列问题:
(1)如图①,则__________,则OB与AC的位置关系为__________
(2)如图②,若点在线段上,且满足 ,并且平分.则的度数等于_____________;
(3)在第(2)题的条件下,若平行移动到如图③所示位置.
①在AC移动的过程中, 与的比值是否发生改变,若不改变求出其比值,若要改变说明理由;
②当∠OEB=∠OCA时,求∠OCA
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com