精英家教网 > 初中数学 > 题目详情
已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3).
(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.
【答案】分析:(1)将A、B的坐标代入抛物线的解析式中,即可求得待定系数的值;将所求得的二次函数解析式化为顶点式,即可得到其对称轴方程及顶点坐标;
(2)首先根据抛物线的对称轴方程求出E点的坐标,进而可得到F点的坐标,由此可求出PF的长,即可判断出四边形OAPF的形状,然后根据其面积求出n的值,再代入抛物线的解析式中即可求出m的值.
解答:解:(1)将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:
解之得:b=4,c=0;
所以抛物线的表达式为:y=-x2+4x,
将抛物线的表达式配方得:y=-x2+4x=-(x-2)2+4,
所以对称轴直线为直线x=2,顶点坐标为(2,4);

(2)点P(m,n)关于直线x=2的对称点坐标为点E(4-m,n),
则点E关于y轴对称点为点F坐标为(m-4,n),
则FP=OA=4,即FP、OA平行且相等,
所以四边形OAPF是平行四边形;
S=OA•|n|=20,即|n|=5;
因为点P为第四象限的点,
所以n<0,
所以n=-5;
代入抛物线方程得m=-1(舍去)或m=5,
故m=5,n=-5.
点评:此题考查了二次函数解析式的确定、轴对称的性质以及图形面积的求法,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,2),B(1,-1),C(3,0).
(1)在图1中,画出以点O为位似中心,放大△ABC到原来2倍的△A′B′C′;
(2)若点P是AB边上一点,平移△ABC后,点P的对应点的坐标是P′(a+3,b-2),在图2中画出平移后的△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知平面直角坐标系中点p(3,2),若将点P先沿x轴方向向右平移2个单位,再将它沿y轴方向向下平移1个单位,到达点Q处,则点Q的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平面直角坐标系中有一线段AB,其中A(1,3)B(4,5),若A、B纵坐标不变,横坐标扩大为原来的2倍,则线段AB
 
向拉长为原来的
 
倍,若点A、B纵坐标不变,横坐标变成原来的
12
,则线段AB
 
向缩短为原来的
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=
5
4
5
4
时,四边形ABDC的周长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)已知平面直角坐标系xOy(如图),直线y=
1
2
x+b
经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.
(1)求b的值;
(2)如果反比例函数y=
k
x
(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.

查看答案和解析>>

同步练习册答案