精英家教网 > 初中数学 > 题目详情
(2003•无锡)(1)解不等式:
(2)做一做:

用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如:“13+23+33+43+53+63+73+83+93+103”可表示为
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:______(填写最后的计算结果).
【答案】分析:(1)根据分式不等式的解法;先通分,再移项,最后化简可得其解集;
(2)根据轴对称的定义,结合题意;可得答案,注意全面考虑多种情况;
(3)根据题意的表述,可得“Σ”这个求和符号的意义与表示方法,进而可2+4+6+8+10+…+100的表示方法,最后得到1+3+8+15+24,计算可得答案.
解答:解:(1)3(x-3)-6>2(x-5),(2分)
3x-9-6>2x-10,(3分)
3x-2x>-10+9+6,(4分)
x>5.(5分)
(2)

(1分),共(3分).

(3)①.(1分)
=0+3+8+15+24=50.(1分)
点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2003•无锡)某商场为提高彩电销售人员的积极性,制定了新的工资分配方案.方案规定:每位销售人员的工资总额=基本工资+奖励工资.每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.
(1)已知销售员甲本月领到的工资总额为800元,则销售员甲本月的销售额为
19375
19375
元.
(2)依法纳税是每个公民应尽的义务,根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表,若销售员乙本月共销售A、B两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A型彩电的销售价为每台1000元,B型彩电的销售价为每台1500元,则销售员乙本月销售A型彩电
14
14
台.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2003•无锡)已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点,点A在x轴的负半轴上,点B在x轴的正半轴上,又此抛物线交y轴于点C,连AC、BC,且满足△OAC的面积与△OBC的面积之差等于两线段OA与OB的积(即S△OAC-S△OBC=OA•OB)
(1)求b的值;
(2)若tan∠CAB=,抛物线的顶点为点P,是否存在这样的抛物线,使得△PAB的外接圆半径为?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省无锡市中考数学试卷(解析版) 题型:解答题

(2003•无锡)已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点,点A在x轴的负半轴上,点B在x轴的正半轴上,又此抛物线交y轴于点C,连AC、BC,且满足△OAC的面积与△OBC的面积之差等于两线段OA与OB的积(即S△OAC-S△OBC=OA•OB)
(1)求b的值;
(2)若tan∠CAB=,抛物线的顶点为点P,是否存在这样的抛物线,使得△PAB的外接圆半径为?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《二次根式》(01)(解析版) 题型:选择题

(2003•无锡)化简的结果是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《数据分析》(02)(解析版) 题型:填空题

(2003•无锡)某校初三(1)班全体同学在“支援灾区献爱心”活动中都捐了款,具体捐款情况如下表,则该班学生捐款的平均数是    元,中位数是    元.
捐款数(元)1234
捐款人数224213

查看答案和解析>>

同步练习册答案