精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.

1)数轴上点A表示的数为   .点B表示的数为   

2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;

3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.

【答案】(1)-10;2 (2)存在;﹣124 34

【解析】

1)结合数轴可知点A和点B都在点C的左边,且点A小于0,在根据题意列式计算即可得到答案;

2)因为AB12,则P不可能在线段AB上,所以分两种情况:

①当点PBA的延长线上时,②当点PAB的延长线上时,进行讨论,即可得到答案;

3)根据题意“tP点到点Q,点R的距离相等”,则此时点PQR所表示的数分别是6t22t,﹣10+5t,分①6t﹣(22t)=6t﹣(﹣10+5t),②6t﹣(22t)=(﹣10+5t)﹣(6t)两种情况,计算即可得到答案.

解:(1)由题意可知点A和点B都在点C的左边,且点A小于0,则由题意可得数轴上点B表示的数为6-4=2,点A表示的数为2-10=10,故答案为:﹣102

2)∵AB12

P不可能在线段AB上,

所以分两种情况:

①如图1,当点PBA的延长线上时,PA+PB16

PA+PA+AB16

2PA16124

PA2

则点P表示的数为﹣12

②如图2,当点PAB的延长线上时,同理得PB2

则点P表示的数为4

综上,点P表示的数为﹣124

3)由题意得:tP点到点Q,点R的距离相等,则此时点PQR所表示的数分别是6t22t,﹣10+5t

6t﹣(22t)=6t﹣(﹣10+5t),解得t

6t﹣(22t)=(﹣10+5t)﹣(6t),解得t4

答:点P与点Q,点R的距离相等时t的值是4秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线y=﹣x+8x轴、y轴分别交于点A和点B,MOB上的一点,若将ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是(  )

A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),点BCE在同一直线上

1)求证:

2)若于点于点,请直接写出图(2)中所有与互余的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,RtABC的三个顶点A(-2,2),B(0,5),C(0,2).

(1)ABC以点C为旋转中心旋转180°,得到A1B1C,请画出A1B1C的图形.

(2)平移ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的A2B2C2的图形.

(3)若将A1B1C绕某一点旋转可得到A2B2C2,请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,完成下列说理过程

如图,点AOB在同一条直线上, ODOE分别平分∠AOC和∠BOC

1)求∠DOE的度数;

2)如果∠COD=65°,求∠AOE的度数.

解:(1)如图,因为OD是∠AOC的平分线,

所以∠COD =AOC

因为OE是∠BOC 的平分线,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,BQ平分∠ABPCQ平分∠ACP,∠BACα,∠BPCβ,则∠BQC_________.(用αβ表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD满足AB:BC=1: ,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为( )

A.4
B.4
C.2
D.1

查看答案和解析>>

同步练习册答案