【题目】如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.
(1)数轴上点A表示的数为 .点B表示的数为 ;
(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;
(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.
【答案】(1)-10;2 (2)存在;﹣12或4 (3)或4
【解析】
(1)结合数轴可知点A和点B都在点C的左边,且点A小于0,在根据题意列式计算即可得到答案;
(2)因为AB=12,则P不可能在线段AB上,所以分两种情况:
①当点P在BA的延长线上时,②当点P在AB的延长线上时,进行讨论,即可得到答案;
(3)根据题意“t秒P点到点Q,点R的距离相等”,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,分①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t)两种情况,计算即可得到答案.
解:(1)由题意可知点A和点B都在点C的左边,且点A小于0,则由题意可得数轴上点B表示的数为6-4=2,点A表示的数为2-10=﹣10,故答案为:﹣10,2;
(2)∵AB=12,
∴P不可能在线段AB上,
所以分两种情况:
①如图1,当点P在BA的延长线上时,PA+PB=16,
∴PA+PA+AB=16,
2PA=16﹣12=4,
PA=2,
则点P表示的数为﹣12;
②如图2,当点P在AB的延长线上时,同理得PB=2,
则点P表示的数为4;
综上,点P表示的数为﹣12或4;
(3)由题意得:t秒P点到点Q,点R的距离相等,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,
①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),解得t=;
②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t),解得t=4;
答:点P与点Q,点R的距离相等时t的值是或4秒.
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是( )
A. y=﹣x+8 B. y=﹣x+8 C. y=﹣x+3 D. y=﹣x+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空,完成下列说理过程
如图,点A,O,B在同一条直线上, OD,OE分别平分∠AOC和∠BOC.
(1)求∠DOE的度数;
(2)如果∠COD=65°,求∠AOE的度数.
解:(1)如图,因为OD是∠AOC的平分线,
所以∠COD =∠AOC.
因为OE是∠BOC 的平分线,
所以 =∠BOC.
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知∠BOE=∠COE = -∠COD= °.
所以∠AOE= -∠BOE = °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD满足AB:BC=1: ,把矩形ABCD对折,使CD与AB重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为( )
A.4
B.4
C.2
D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com