精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且.

(1)求证:△CED∽△ACD;
(2)求证:.

(1)证明见试题解析;(2)证明见试题解析.

解析试题分析:(1)由,容易得出△ACB∽△CDB,求出∠BCD=∠A,由CD平分∠ECB,得出∠DCE=∠A,得到结论;
(2)由△CED∽△ACD和△ACB∽△CDB即可得出结论.
试题解析:(1)∵,∴,∵∠B=∠B,∴△ACB∽△CDB,∴∠A=∠BCD,∵CD平分∠ECB,∴∠BCD=∠ECD,∴∠DCE=∠A,∵∠EDC=∠EDC,∴△CED∽△ACD;
(2)△ACB∽△CDB,∴,∵△CED∽△ACD,∴,∴.
考点:相似三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),

解答下列问题:
(1)当为何值时,△BPQ为直角三角形;
(2)设△BPQ的面积为S(cm2),求S与的函数关系式;
(3)作QR∥BA交AC于点R,连结PR,当为何值时,△APR∽△PRQ ?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC中,∠C=90°,BC=8cm,,点P从B点出发,沿BC方向以2cm/m的速度移动,点Q从C出发,沿CA方向以1cm/m的速度移动。若P、Q同时分别从B、C出发,经过多少时间△CPQ与△CBA相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.

求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结并延长交的延长线于点

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,D、E两点分别在AC、AB两边上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平行四边形中,为边延长线上的一点,且的黄金分割点,即于点,已知,求的长.

查看答案和解析>>

同步练习册答案