精英家教网 > 初中数学 > 题目详情
如图,点D在△ABC的边AB上,连接CD,下列条件:(1);(2);(3);(4),其中能判定△ACD∽△ABC的共有(  )
A.1个B.2个C.3个D.4个
C

试题分析:由图可得△ACD与△ABC有一个公共角∠A,再结合相似三角形的判定方法依次分析即可.
(1),(2),(3),均能判定△ACD∽△ABC;
(4),不能判定△ACD∽△ABC;
故选C.
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在的正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).

(1)以点O(0,0)为位似中心,按比例尺(OA︰OA’)1:3在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’(       ),B’(           );
(2)在(1)中,若为线段上任一点,写出变化后点的对应点的坐标(        ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在数学学习和研究中经常需要总结运用数学思想方法。如类比、转化、从特殊到一般等思想方法,如下是一个案例,请补充完整。
题目:如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若,求的值。

(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则易求的值是       的值是
         ,从而确定的值是          
(2)类比延伸
如图2,在原题的条件下,若,则的值是         。(用含m的代数式表示),写出解答过程。
(3)拓展迁移
如图3,在梯形ABCD中,DC∥AB,点E是BC延长线上的一点,AE和BD相交于F,若a>0,b>0),则的值是         。(用含ab的代数式表示)写出解答过程。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一张矩形报纸ABCD的长为AB="acm" ,宽BC="bcm" ,E、F 分别为AB、CD的中点,若矩形AEFD与矩形ABCD相似,则a : b等于(     )
A.            B.          C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图①,在中,,点出发沿方向向点匀速运动,速度为1cm/s;点出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为),解答下列问题:

(1)当为何值时,
(2)设的面积为),求之间的函数关系式;
(3)如图②,连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.

(1) 求证:DE-BF = EF.
(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系, 并说明理由.
(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠BAC=90°,AD⊥BC于D,AB=1,AC=2,则BD=      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.

(1)当∠AOB=30°时,求弧AB的长;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,DE是△ABC的中位线,F是DE的中点,C F的延长线交AB于点G,则AG∶GD的值为________________.

查看答案和解析>>

同步练习册答案