精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数(abc是常数,a≠0)图象的一部分,与x轴的交点A在点(2 0)(3 0)之间,对称轴是x=1.对于下列结论:① ab0;② 2a+b=0;③ 3a+c0;④a+b≥m(am+b)(m为实数);⑤ 当-1x3时,y0. 其中正确结论的个数为( )

A. 2B. 3C. 4D. 5

【答案】B

【解析】

由抛物线的开口方向判断a0的关系,由抛物线与y轴的交点判断c0的关系,然后根据对称轴判定b0的关系以及2a+b=0;当x=-1时,y=a-b+c;然后由图象确定当x取何值时,y0

①∵对称轴在y轴右侧,
ab异号,
ab0,故正确;
②∵对称轴x=-=1
2a+b=0;故正确;
③∵2a+b=0
b=-2a
∵当x=-1时,y=a-b+c0
a--2a+c=3a+c0,故错误;
④根据图示知,当m=1时,有最大值;
m≠1时,有am2+bm+c≤a+b+c
所以a+b≥mam+b)(m为实数).
故正确.
⑤如图,当-1x3时,y不只是大于0
故错误.
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC内接于⊙OAB是⊙O的直径,点F在⊙O上,且点C的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E

1)求证:AEDE

2)若∠BAF=60°AF=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.

(1)求证:DE=OE;

(2)若CDAB,求证:BC是⊙O的切线;

(3)在(2)的条件下,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,点上一点,将沿折叠得到,点上一点,将沿折叠得到,且落在线段上,当时,则的长为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-[x-22+n]x轴交于点Am-20)和B2m+30)(点A在点B的左侧),与y轴交于点C,连结BC

1)求mn的值;

2)如图,点N为抛物线上的一动点,且位于直线BC上方,连接CNBN.求NBC面积的最大值;

3)如图,点MP分别为线段BC和线段OB上的动点,连接PMPC,是否存在这样的点P,使PCM为等腰三角形,PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点G在边AB(不与点AB重合),连接DG,作CEDG于点EAFDG于点F,连接AECF.

(1)求证:DE=AF

(2),的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某办公大楼正前方有一根高度是米的旗杆,从办公楼顶端测得旗杆顶端的俯角,旗杆底端到大楼前梯坎底边的距离米,梯坎坡长米,梯坎坡度,求大楼的高度.(精确到米,参与数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长是4,点EAB边上一动点,连接CE,过点BBGCE于点G,点PAB边上另一动点,则PD+PG的最小值是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C = 90,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC已知AC=6OC=,则直角边BC的长为___________

查看答案和解析>>

同步练习册答案