精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,直线l的解析式为y=
3
3
x
,关于x的一元二次方程2x2-2(m+2)x+(2m+5)=0(m>0)有两个相等的实数根.
(1)试求出m的值,并求出经过点A(0,-m)和D(m,0)的直线解析式;
(2)在线段AD上顺次取两点B、C,使AB=CD=
3
-1,试判断△OBC的形状;
(3)设直线l与直线AD交于点P,图中是否存在与△OAB相似的三角形?如果存在,请直接写出;如果不存在,请说明理由.
分析:(1)依题意得△=0得出m值,然后可求出点A,D的坐标,设直线AD的解析式为y=kx+b,把已知坐标代入可求得解析式;
(2)作OE⊥AD于E,利用勾股定理求出AD,继而求出OE的长.然后根据三角函数证明△OBC为等边三角形;
(3)利用相似三角形的判定可知道存在与△OAB相似的三角形.
解答:解:(1)由题意得△=[-2(m+2)]2-4×2×(2m+5)=0,
∴m=±
6

∵m>0,
∴m=
6

∴点A(0,-
6
)、D(
6
,0),
设经过A、D两点的直线解析式为y=kx+b,
b=-
6
0=
6
k+b

解得
k=1
b=-
6

∴y=x-
6

精英家教网
(2)作OE⊥AD于E,
由(1)得OA=OD=
6

∴AD=
OA2+OD2
=2
3

∴OE=AE=ED=
1
2
AD=
3

∵AB=CD=
3
-1,
∴BE=EC=1,
∴OB=OC,
在Rt△OBE中,tan∠OBE=
OE
BE
=
3

∴∠OBC=60°,
∴△OBC为等边三角形;

(3)存在,△ODC、△OPC、△PAO.
点评:本题考查的是相似三角形的判定定理,一次函数的综合运用,等边三角形的性质以及三角函数的有关知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案