18£®Èçͼ1Ëùʾ£¬ÒÑÖªÅ×ÎïÏßy=-x2+bx+cÓëxÖá½»ÓÚA£¨-1£¬0£©¡¢B£¨5£¬0£©Á½µã£¬ÓëyÖá½»ÓÚCµã£¬DΪÅ×ÎïÏߵĶ¥µã£¬EΪÅ×ÎïÏßÉÏÒ»µã£¬ÇÒC¡¢E¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬·Ö±ð×÷Ö±ÏßAE¡¢DE£®

£¨1£©Çó´Ë¶þ´Îº¯ÊýµÄ¹Øϵʽ£»
£¨2£©ÔÚͼ1ÖУ¬Ö±ÏßDEÉÏÓÐÒ»µãQ£¬Ê¹µÃ¡÷QCO¡Õ¡÷QBO£¬ÇóµãQµÄ×ø±ê£»
£¨3£©Èçͼ2£¬Ö±ÏßDEÓëxÖá½»ÓÚµãF£¬µãMΪÏ߶ÎAFÉÏÒ»¸ö¶¯µã£¬ÓÐAÏòFÔ˶¯£¬ËÙ¶ÈΪÿÃë2¸öµ¥Î»³¤¶È£¬Ô˶¯µ½F´¦Í£Ö¹£¬µãNÓÉF´¦³ö·¢£¬ÑØÉäÏßFE·½ÏòÔ˶¯£¬ËÙ¶ÈΪÿÃë$\sqrt{5}$¸öµ¥Î»³¤¶È£¬M¡¢NÁ½µãͬʱ³ö·¢£¬Ô˶¯Ê±¼äΪtÃ룬µ±MֹͣʱµãNͬʱֹͣÔ˶¯×ø±êƽÃæÄÚÓÐÒ»¸ö¶¯µãP£¬tΪºÎֵʱ£¬ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÌØÊâµÄƽÐÐËıßÐΣ®ÇëÖ±½Óд³ötÖµ£®

·ÖÎö £¨1£©Ö±½ÓÀûÓý»µãʽд³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èçͼ1£¬ÀûÓÃÅä·½·¨µÃµ½D£¨2£¬9£©£¬Å×ÎïÏߵĶԳÆÖáΪֱÏßx=2£¬ÔÙÈ·¶¨C£¨0£¬5£©£¬ÔòE£¨4£¬5£©£¬½Ó×ÅÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßDEµÄ½âÎöʽΪy=-2x+13£¬È»ºó¸ù¾ÝÈ«µÈÈý½ÇÐεÄÐÔÖʵõ½¡ÏCOQ=¡ÏBOQ£¬ËùÒÔµãQΪµÚÒ»ÏóÏÞ½Çƽ·ÖÏßÉϵĵ㣬×îºó½â·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{y=-2x+13}\end{array}\right.$µÃQµãµÄ×ø±ê£»
£¨3£©Èçͼ2£¬¶Ô³ÆÖá½»xÖáÓÚµãH£¬ÏÈÈ·¶¨DH=9£¬FH=$\frac{9}{2}$£¬DF=$\frac{9\sqrt{5}}{2}$£¬AF=$\frac{15}{2}$£¬AM=2t£¬FN=$\sqrt{5}$t£¬ÔòFM=$\frac{15}{2}$-2t£¬·ÖÀàÌÖÂÛ£ºµ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬ÇÒFM¡¢FNΪÁâÐεÄÁ½Áڱߣ¬ÔòFN=FM£¬¼´$\sqrt{5}$t=$\frac{15}{2}$-2t£»µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬ÇÒFNΪÁâÐζԽÇÏߣ¬Á¬½ÓMP½»FNÓÚQ£¬ÀûÓÃÁâÐεÄÐÔÖʵÃFQ=$\frac{\sqrt{5}}{2}$t£¬ÔÙͨ¹ýµÃ¡÷FQH¡×¡÷FHDµÃµ½$\frac{\sqrt{5}}{2}$t£º$\frac{9}{2}$=£¨$\frac{15}{2}$-2t£©£º$\frac{9\sqrt{5}}{2}$£»µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬ÇÒFMΪÁâÐζԽÇÏߣ¬NPÓëMFÏཻÓÚK£¬Èçͼ3£¬ÀûÓÃÁâÐεÄÐÔÖʵÃFK=$\frac{1}{2}$£¨$\frac{15}{2}$-2t£©£¬ÔÙͨ¹ý¡÷FKN¡×¡÷FHDµÃµ½$\frac{1}{2}$£¨$\frac{15}{2}$-2t£©£º$\frac{9}{2}$=$\sqrt{5}$t£º$\frac{9\sqrt{5}}{2}$£»µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬ÇÒ¡ÏNMF=90¡ã£¬Í¨¹ý¡÷FMN¡×¡÷FHDµÃµ½£¨$\frac{15}{2}$-2t£©£º$\frac{9}{2}$=$\sqrt{5}$t£º$\frac{9\sqrt{5}}{2}$£»µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬ÇÒ¡ÏMNF=90¡ã£¬Í¨¹ý¡÷FNM¡×¡÷FHDµÃµ½£¨$\frac{15}{2}$-2t£©£º$\frac{9\sqrt{5}}{2}$=$\sqrt{5}$t£º$\frac{9}{2}$£¬È»ºó·Ö±ð½â¹ØÓÚtµÄ·½³Ì¿ÉÈ·¶¨Âú×ãÌõ¼þµÄtµÄÖµ£®

½â´ð ½â£º£¨1£©Å×ÎïÏߵĽâÎöʽΪy=-£¨x+1£©£¨x-5£©£¬¼´y=-x2+4x+5£»
£¨2£©Èçͼ1£¬y=-x2+4x+5=-£¨x-2£©2+9£¬ÔòD£¨2£¬9£©£¬Å×ÎïÏߵĶԳÆÖáΪֱÏßx=2£¬
µ±x=0ʱ£¬y=-x2+4x+5=5£¬ÔòC£¨0£¬5£©£¬
¡ßC¡¢E¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬
¡àE£¨4£¬5£©£¬
ÉèÖ±ÏßDEµÄ½âÎöʽΪy=mx+n£¬
°ÑD£¨2£¬9£©£¬E£¨4£¬5£©´úÈëµÃ$\left\{\begin{array}{l}{2m+n=9}\\{4m+n=5}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=-2}\\{n=13}\end{array}\right.$£¬
¡àÖ±ÏßDEµÄ½âÎöʽΪy=-2x+13£¬
¡ß¡÷QCO¡Õ¡÷QBO£¬
¡à¡ÏCOQ=¡ÏBOQ£¬
¡àµãQΪµÚÒ»ÏóÏÞ½Çƽ·ÖÏßÉϵĵ㣬
¼´OQµÄ½âÎöʽΪy=x£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{y=-2x+13}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{13}{3}}\\{y=\frac{13}{3}}\end{array}\right.$£¬
¡àQµãµÄ×ø±êΪ£¨$\frac{13}{3}$£¬$\frac{13}{3}$£©£»
£¨4£©Èçͼ2£¬¶Ô³ÆÖá½»xÖáÓÚµãH£¬DH=9£¬FH=$\frac{9}{2}$£¬DF=$\frac{9\sqrt{5}}{2}$£¬
µ±y=0ʱ£¬-2x+13=0£¬½âµÃx=$\frac{13}{2}$£¬ÔòF£¨$\frac{13}{2}$£¬0£©£¬
¡àAF=$\frac{13}{2}$-£¨-1£©=$\frac{15}{2}$£¬
AM=2t£¬FN=$\sqrt{5}$t£¬ÔòFM=$\frac{15}{2}$-2t£¬
µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬ÇÒFM¡¢FNΪÁâÐεÄÁ½Áڱߣ¬ÔòFN=FM£¬¼´$\sqrt{5}$t=$\frac{15}{2}$-2t£¬½âµÃt=$\frac{15\sqrt{5}-30}{2}$£»
µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬ÇÒFNΪÁâÐζԽÇÏߣ¬Á¬½ÓMP½»FNÓÚQ£¬ÔòPMÓëNQ»¥Ïഹֱƽ·Ö£¬FQ=$\frac{\sqrt{5}}{2}$t£¬
Ò׵á÷FQH¡×¡÷FHD£¬
¡àFQ£ºFH=FM£ºFD£¬¼´$\frac{\sqrt{5}}{2}$t£º$\frac{9}{2}$=£¨$\frac{15}{2}$-2t£©£º$\frac{9\sqrt{5}}{2}$£¬½âµÃt=$\frac{5}{3}$£»
µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬ÇÒFMΪÁâÐζԽÇÏߣ¬NPÓëMFÏཻÓÚK£¬Èçͼ3£¬ÔòMFÓëNP»¥Ïഹֱƽ·Ö£¬FK=$\frac{1}{2}$MF=$\frac{1}{2}$£¨$\frac{15}{2}$-2t£©£¬
Ò׵á÷FKN¡×¡÷FHD£¬
¡àFK£ºFH=FN£ºFD£¬¼´$\frac{1}{2}$£¨$\frac{15}{2}$-2t£©£º$\frac{9}{2}$=$\sqrt{5}$t£º$\frac{9\sqrt{5}}{2}$£¬½âµÃt=$\frac{15}{8}$£»
µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬ÇÒ¡ÏNMF=90¡ã£¬
Ò׵á÷FMN¡×¡÷FHD£¬
¡àFM£ºFH=FN£ºFD£¬¼´£¨$\frac{15}{2}$-2t£©£º$\frac{9}{2}$=$\sqrt{5}$t£º$\frac{9\sqrt{5}}{2}$£¬½âµÃt=$\frac{5}{2}$£»
µ±ÒÔP¡¢M¡¢N¡¢FΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬ÇÒ¡ÏMNF=90¡ã£¬
Ò׵á÷FNM¡×¡÷FHD£¬
¡àFM£ºFD=FN£ºFH£¬¼´£¨$\frac{15}{2}$-2t£©£º$\frac{9\sqrt{5}}{2}$=$\sqrt{5}$t£º$\frac{9}{2}$£¬½âµÃt=$\frac{15}{14}$£¬
×ÛÉÏËùÊö£¬tµÄֵΪ$\frac{15\sqrt{5}-30}{2}$»ò$\frac{5}{3}$»ò$\frac{15}{8}$»ò$\frac{5}{2}$»ò$\frac{15}{14}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýµÄÐÔÖʺÍÌØÊâƽÐÐËıßÐεÄÅж¨ÓëÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍ¶þ´Îº¯Êý½âÎöʽ£»»áÀûÓÃÏàËƱÈÁз½³Ì£»Àí½â×ø±êÓëͼÐεÄÐÔÖÊ£»»áÀûÓ÷ÖÀàÌÖÂÛµÄÊýѧ½â¾öÊýѧÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬Ä³Óæ´¬ÉϵÄÓæÃñÔÚA´¦²âµÃµÆËþMÔÚ±±Æ«¶«60¡ã·½Ïò£¬ÕâËÒÓæ´¬ÒÔ20º£Àï/СʱµÄËÙ¶ÈÏòÕý¶«·½Ïòº½ÐУ¬°ëСʱµ½´ïBµã£®ÔÚB´¦²âµÃµÆËþMÔÚ±±Æ«¶«30¡ã·½Ïò£¬ÎÊB´¦ÓëµÆËþMµÄ¾àÀëÊǶàÉÙº£À

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚÊýÖáÉÏ£¬µ½Ô­µãµÄ¾àÀëµÈÓÚ3µÄµãËù±íʾµÄÓÐÀíÊýÊÇ¡À3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¨1£©ÒÑÖªµãA£¨2$\sqrt{3}$£¬2$\sqrt{3}$£©£®¹ýµãA×÷xÖáµÄ´¹Ïß½»Ö±Ïßy=-xÓÚµãC£¬ÈôµãPÊÇÖ±Ïßy=-xÉϵÄÒ»¸ö¶¯µã£¬¡ÏAPB=30¡ã£¬BA¡ÍPA£®
£¨1£©µ±µãPÓëµãOÖغÏʱ£¬Èçͼ£¨2£©Ëùʾ£¬ÇóÖ±ÏßABµÄº¯Êý½âÎöʽ£®
£¨2£©ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬µãBÒ²ËæÖ®Ô˶¯£¬ÇóÏ߶ÎOBµÄ×îСֵ£®
£¨3£©µãQÊÇ×ø±êƽÃæÄÚµÄÈÎÒâÒ»µã£¬Çë̽Ë÷£ºÊÇ·ñ´æÔÚÕâÑùµÄµãQ£®Ê¹µÃÒÔµãB¡¢µãP¡¢µãC¡¢µãQΪ¶¥µãµÄËıßÐÎʱһ¸ö¾ØÐΣ¿Èô´æÔÚÇëÇó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬ÒÔACΪֱ¾¶×÷¡ÑO½»BCÓÚD£¬PÊÇABÑÓ³¤ÏßÉÏÒ»µã£¬Á¬PC£¬ÇÒ¡ÏPCB=$\frac{1}{2}$¡ÏBAC
£¨1£©ÇóÖ¤£ºPCÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©Èôsin¡ÏBAC=$\frac{3}{5}$£¬Çótan¡ÏPCBµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆË㣺$\frac{1}{x-2}-\frac{2}{x-1}+\frac{2}{x+1}-\frac{1}{x+2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª£¬¾ØÐÎABCDÖУ¬AB=15£¬AD=20£¬µãMÔÚ¶Ô½ÇÏßBDÉÏ£¬µãNΪÉäÏßBCÉÏÒ»¶¯µã£¬Á¬½ÓMN¡¢DN£¬ÇÒ¡ÏDNM=¡ÏDBC£¬µ±DMNÊǵÈÑüÈý½ÇÐΣ¬Ï߶ÎBNµÄ³¤ÊÇ25£¬40£¬$\frac{125}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®µ±x=a»òx=b£¨a¡Ùb£©Ê±£¬´úÊýʽx2-4x+2µÄÖµÏàµÈ£¬Ôòµ±x=a+bʱ£¬´úÊýʽx2-4x+2µÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô$\sqrt{x+2}$=3£¬Ôòx+20µÄÁ¢·½¸ùÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸