解:(1)∠BAE=∠FEC;
理由如下:
∵∠B+∠BAE=∠AEC,∠AEF=∠B,
∴∠BAE=∠FEC;
(2)如图1,当∠AFE=90°时,
∵∠B+∠BAE=∠AEF+∠CEF,
∠B=∠AEF=∠C,
∴∠BAE=∠CEF,
∵∠C+∠CEF=90°,
∴∠BAE+∠AEF=90°,
即∠AEF与∠BAE的数量关系是互余;
如图2,当∠EAF=90°时,
∵∠B+∠BAE=∠AEF+∠1,
∠B=∠AEF=∠C,
∴∠BAE=∠1,
∵∠C+∠1+∠AEF=90°,
∴2∠AEF+∠1=90°,
即2∠AEF与∠BAE的数量关系是互余.
分析:(1)根据三角形内角与外角的关系可得∠B+∠BAE=∠AEC=∠AEF+∠FEC,再由条件∠AEF=∠B可得∠BAE=∠FEC;
(2)分别根据当∠AFE=90°时,以及当∠EAF=90°时利用外角的性质得出即可.
点评:此题考查了等腰三角形的性质以及外角的性质,此题难度适中,注意掌握分类讨论思想的应用.