【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E,连接OC.
(1) 判断直线CD与⊙O的位置关系,并说明理由;
(2) 若BE=,DE=3,求⊙O的半径及AC的长.
【答案】(1)DC是⊙O的切线,理由见解析;(2)半径为1,AC=
【解析】
(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;
(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得,推出r=1,可得OE=2,即有,可推出,则利用勾股定理和含有30°的直角三角形的性质,可求得OC=2,,再利用勾股定理求出即可解决问题;
(1)证明:∵CB=CD,CO=CO,OB=OD,
∴△OCB≌△OCD(SSS),
∴∠ODC=∠OBC=90°,
∴OD⊥DC,
∴DC是⊙O的切线;
(2)解: 设⊙O的半径为r.
在Rt△OBE中,∵OE2=EB2+OB2,
∴,
∴
∴OE=3-1=2
Rt△ABC中,
∴
∴
Rt△BCO中,,
Rt△ABC中,
科目:初中数学 来源: 题型:
【题目】如图中,,P是斜边AC上一个动点,以即为直径作交BC于点D,与AC的另一个交点E,连接DE.
(1)当时,
①若,求的度数;
②求证;
(2)当,时,
①是含存在点P,使得是等腰三角形,若存在求出所有符合条件的CP的长;
②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在内,则CP的取值范围为________.(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是的直径,C是半圆AB上一点,连AC、OC,AD平分,交弧BC于D,交OC于E,连OD,CD,下列结论:
①弧弧CD;②;③;④当C是半圆的中点时,则.其中正确的结论是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A. 角的内部到角的两边的距离相等的点在角的平分线上
B. 角平分线上的点到这个角两边的距离相等
C. 三角形三条角平分线的交点到三条边的距离相等
D. 以上均不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两位同学利用灯光下的影子来测量一路灯A的高度,如图,当甲走到点C处时,乙测得甲直立身高CD与其影子长CE正好相等,接着甲沿BC方向继续向前走,走到点E处时,甲直立身高EF的影子恰好是线段EG,并测得EG=2.5m.已知甲直立时的身高为1.75m,求路灯的高AB的长.(结果精确到0.1m)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com