精英家教网 > 初中数学 > 题目详情
7.如图所示,在?ABCD中,EF过对角线AC,BD的交点O,若FC=3DF;S△BOE=2,那么,?ABCD 的面积为32.

分析 由四边形ABCD是平行四边形,得出∠FDO=∠EBO、OD=OB,由ASA证得△FDO≌△EBO,得出S△DOF=S△BOE,求出S△COD=8即可得出结果.

解答 解:∵四边形ABCD是平行四边形,
∴∠FDO=∠EBO,OD=OB,
在△FDO和△EBO中,$\left\{\begin{array}{l}{∠FDO=∠EBO}\\{OD=OB}\\{∠FOD=∠EOB}\end{array}\right.$,
∴△FDO≌△EBO(ASA),
∴S△DOF=S△BOE
∵S△BOE=2,
∴S△DOF=2,
∵FC=3DF,
∴S△COF=6,
∴S△COD=8,
∴?ABCD 的面积=4S△COD=4×8=32,
故答案为:32.

点评 本题主要考查了平行四边形的性质、全等三角形的判定与性质、三角形面积计算、平行四边形面积的计算等知识,熟练掌握全等三角形的面积相等与等高三角形面积计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在四边形ABCD中,AC平分∠BCD,AC2=CD•BC,E是BC的中点,AC⊥AB.
(1)求证:AD⊥AE;
(2)过E作EG⊥AB,并延长EG至点K,使EK=EB,∠B=30°,求证:四边形AKEC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的正视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)-2-(+8)-(-5);
(2)-14-|0.5-1|×$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在?ABCD中,对角线AC、BD相交于点O,则下列式子不正确的是(  )
A.BO=ODB.AB=CDC.∠BAD=∠BCDD.AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为(  )
A.2cmB.$\sqrt{3}$cmC.2$\sqrt{5}$cmD.2$\sqrt{3}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果圆柱体的底面半径为50厘米,侧面积为1570平方厘米,那么它的高为5厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.下面是一组同学做“抛掷质地均匀的硬币试验”获得的数据.
 抛掷次数100200300400500
正面朝上的
频数m
5198153200250
正面朝上的
频率mn
0.510.490.510.50 
0.51 
(1)填写表中的空格;
(2)画出折线统计图;
(3)抛掷质地均匀的硬币,正面朝上的概率的估计值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.圆面积S与半径r之间的关系式S=πr2中自变量是r,因变量是S,常量是π.

查看答案和解析>>

同步练习册答案