【题目】如图,抛物线与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过P作PD∥AC,交BC于点D,连接CP.
(1)直接写出A、B、C的坐标;
(2)求△PCD面积的最大值,并判断当△PCD的面积取最大值时,以PA、PD为邻边的平行四边形是否为菱形.
【答案】(1)A(4,0)、B(﹣2,0)、C(0,﹣4);(2)PA、PD为邻边的平行四边形不是菱形
【解析】
试题分析:(1)设y=0,解一元二次方程即可求出A和B的坐标,设x=0,则可求出C的坐标;
(2)设P(x,0)(﹣2<x<4),由PD∥AC,可得到关于PD的比例式,由此得到PD和x的关系,再求出C到PD的距离(即P到AC的距离),利用三角形的面积公式可得到S和x的函数关系,利用函数的性质即可求出三角形面积的最大值,进而得到x的值,所以PD可求,而PA≠PD,所以PA、PD为邻边的平行四边形不是菱形.
试题解析:(1)A(4,0)、B(﹣2,0)、C(0,﹣4);
(2)PA、PD为邻边的平行四边形不是菱形,
理由如下:
设P(x,0)(﹣2<x<4),
∵PD∥AC,
∴,
解得,
∵C到PD的距离(即P到AC的距离),
∴△PCD的面积,
即,
∴△PCD面积的最大值为3,
当△PCD的面积取最大值时,x=1,PA=4﹣x=3,,
∵PA≠PD,
∴PA、PD为邻边的平行四边形不是菱形.
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋中,放入分别标注1、﹣2、3三个不同数字的小球,小球除了数字不同外,其余都相同.小明闭上眼睛先把小球搅均,再从该布袋中摸出第一个小球,记小球上的数字为A,把球重新放回布袋中搅均,摸出第二个小球,记小球上的数字为B.
(1)求小明第一次摸出的小球上的数字为“负数”的概率;
(2)求两次摸出的小球上的数字均是一元一次不等式2x+3>0的解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周长;
(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com