精英家教网 > 初中数学 > 题目详情
1.抛物线过(-1,10)、(1,4)、(2,7)三点,求抛物线的解析式.

分析 直接将三点代入函数关系式,进而得出方程组,求出答案即可.

解答 解:设抛物线解析式为:y=ax2+bx+c,
将(-1,10)、(1,4)、(2,7)三点分别代入得:
$\left\{\begin{array}{l}{a-b+c=10}\\{a+b+c=4}\\{4a+2b+c=7}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=-3}\\{c=5}\end{array}\right.$,
故抛物线的解析式为:y=2x2-3x+5.

点评 此题主要考查了待定系数法求二次函数关系式,正确解方程组是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)
(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73,$\sqrt{5}$≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某房地产开发公司计划建A、B两种户型的住房共80套,A种户型每套成本和售价分别为90万元和102万元,B种户型每套成本和售价分别为60万元和70万元.设计划建A户型x套,所建户型全部售出后获得的总利润为W万元.
【思考】
(1)根据所给条件,完成下表:
A户型B户型
套数x80-x
利润(万元)12x10(80-x)
(2)求W与x之间的函数解析式;
【探究】
(3)该公司所建房资金不少于5700万元,且所筹资金全部用于建房,若A户型不超过32套,则该公司有哪几种建房方案?
(4)在(3)的前提下,根据国家房地产政策,公司计划每套A户型住房的售价降低a万元(0<a≤3),B户型住房的售价不变,且预计所建的两种住房全部售出,求该公司获得最大利润的方案.
【决策】
为了适应市场需要,该公司在总套数不变的情况下,改建若干套C户型,现已知C户型每套成本110万元,售价118万元.若该公司所筹资金为6300万元且刚好用完,则当x=45套时,该公司所建房售出后获得的总利润最大.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.小明在某一时刻测得1m的杆子在阳光下的影子长为2m,他想测量电线杆AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=4m,BC=10m,CD与底面成45°,求电线杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发3h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.
(1)求点D的坐标,并解释点D的实际意义;
(2)求线段DE所在直线的函数表达式;
(3)当货车出发$\frac{10}{3}$或5h时,两车相距50km.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知抛物线y=x2-2x-a.
(1)若抛物线与x轴有两个交点,求a的取值范围;
(2)当代数式x2-2x-1的值为负整数时,求x的值.
(3)设抛物线与y轴的交点为A,顶点为B,直线AB与x轴交于点C,抛物线与x轴的右交点为D,是否存在C,D两点关于y轴对称的情况?如果存在,求出此时a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.甲、乙两车分别从A、B两地相向而行,甲车出发0.5小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是两车离B地距离y与甲车出发时间t(小时)之间的函数图象.
(1)a=2;
(2)若甲乙两车之间的距离s(米),则s与甲车出发时间t≥a之间的函数关系式为:s=$\left\{\begin{array}{l}{140t-280(2≤t≤3.5)}\\{60t(3.5<t≤4)}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,O为坐标原点.
(1)求此抛物线的解析式;
(2)若将此抛物线向下平移h个单位长度,使平移后的抛物线顶点落在Rt△BOC内(包括△BOC边界),求h的范围;
(3)试问在y轴上是否存在一点P,使∠OPA+∠OCA=∠CBA?若存在,求出CP之长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.一手机经销商计划购进某品牌的A型、B型两款手机共40部,每款手机至少要购进10部,设购进A型手机x部,B型手机y部,两款手机的金价和预售价如表:
手机型号A型B型
进价(单位:元/部)9001200
预售价(单位:元/部)12001600
(1)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;
②求出预估利润的最大值,并写出此时购进两款手机各多少部.

查看答案和解析>>

同步练习册答案