精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.

(1)求A,B两点的坐标;

(2)过B点作直线与x轴交于点P,若ABP的面积为,试求点P的坐标.

【答案】(1)A(﹣,0);(2)P点坐标为(1,0)或(﹣4,0

【解析】

试题(1)把x=0y=0分别代入函数解析式,即可求得相应的yx的值,则易得点AB的坐标;

2)由BA的坐标易求:OB=3OA=.然后由三角形面积公式得到SABP=APOB=,则AP=.设点P的坐标为(m0),则m﹣=﹣m=,由此可以求得m的值.

试题解析:(1)由x=得:y=3,即:B03).

y=0得:2x+3=0,解得:x=﹣,即:A0);

2)由B03)、A0)得:OB=3OA=

∵SABP=APOB=

AP=

解得:AP=

设点P的坐标为(m0),则m﹣=﹣m=

解得:m=1﹣4

∴P点坐标为(10)或(﹣40).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了从甲、乙两名同学中选拔一人参加射击比赛,在同等的条件下,教练给甲、乙两名同学安排了一次射击测验,每人打10发子弹,下面是甲、乙两人各自的射击情况记录(其中乙的情况记录表上射中9,10环的子弹数因被墨水污染而看不清楚,但是教练记得乙射中9,10环的子弹数均不为0):

(1)求甲同学在这次测验中平均每发射中的环数;

(2)根据这次测验的情况,如果你是教练,你认为选谁参加比赛比较合适?并说明理由.(结果保留到小数点后1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强居民节约用水意识,某市在2018年开始对供水范围内的居民用水实行“阶梯收费”,具体收费标准如下表:

某户居民四月份用水10 m3时,缴纳水费23元.

(1) a的值;

(2) 若该户居民五月份所缴水费为71元,求该户居民五月份的用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC、BD相交于点O,若AE平分∠BAD交BC于点E,且BO=BE,连接OE,则∠BOE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=4cm,∠CAB=60°,P是弧 上的一个动点,连接AP,过C点作CD⊥AP于D,连接BD,在点P移动的过程中,BD的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC的两条外角平分线BP,CP相交于点P,PEACAC的延长线于点E.ABC的周长为11,PE=2,SBPC=2,则SABC________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A,B(A在B的左侧),抛物线的对称轴为直线x=1,AB=4.
(1)求抛物线的表达式;
(2)抛物线上有两点M(x1 , y1)和N(x2 , y2),若x1<1,x2>1,x1+x2>2,试判断y1与y2的大小,并说明理由;
(3)直线l过A及C(0,﹣2),P为抛物线上一点(在x轴上方),过P作PD∥y轴交直线AC于点D,以PD为直径作⊙E,求⊙E在直线AC上截得的线段的最大长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,DAB边上的一点,过点DDEBC,ABC的角平分线于点E.

(1)如图1,当点E恰好在AC边上时,求证:∠ADE=2DEB;

(2)如图2,当点DBA的延长线上时,其余条件不变,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过FDEBC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为(  )

A. 3 B. 4 C. 3.5 D. 2

查看答案和解析>>

同步练习册答案