精英家教网 > 初中数学 > 题目详情
如图所示,在平面直角坐标系xOy中,正方形PABC的边长为1,将其沿x轴的正方向连续滚动,即先以顶点A为旋转中心将正方形PABC顺时针旋转90°得到第二个正方形,再以顶点D为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n个正方形.设滚动过程中的点P的坐标为(x,y).

(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P的坐标;
(2)画出点P(x,y)运动的曲线(0≤x≤4),并直接写出该曲线与x轴所围成区域的面积.
分析:(1)有意义直接画图,再有画的图形可直接写出点P的坐标;
(2)有点P运动的轨迹可知为弧线,只要找到所在的圆心和半径即可,利用扇形的面积公式即可求出该曲线与x轴所围成区域的面积.
解答:解:(1)第三个和第四个正方形的位置如图所示:

第三个正方形中的点P的坐标为:(3,1);

(2)点P(x,y)运动的曲线(0≤x≤4)如图所示:

由图形可知它与x轴所围成区域的面积=
π
4
+
90π× (
2
) 2
360
+1+
π
4
=π+1.
点评:本题考查了图形旋转的性质:旋转前后图形全等和扇形的面积公式:
nπr 2
360
,题目难度不大,不过很新颖.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=
9x
的图象在第一象限相精英家教网交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A,B,C作循环对称跳动,即第一次从点P跳到关于点A的对称点M处,第二次从点M跳到关于点B的对称点N处,第三次从点N跳到关于点C的对称点处,…如此下去.
(1)在图中标出点M,N的位置,并分别写出点M,N的坐标:
 

(2)请你依次连接M、N和第三次跳后的点,组成一个封闭的图形,并计算这个图形的面积;
(3)猜想一下,经过第2009次跳动之后,棋子将落到什么位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在平面直角坐标系xoy中,有一组对角线长分别为1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其对角线OB1、B1B2、B2 B3依次放置在y轴上(相邻顶点重合),依上述排列方式,对角线长为n的第n个正方形的顶点An的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接精英家教网BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P',请直接写出P'点坐标,并判断点P'是否在该抛物线上.

查看答案和解析>>

同步练习册答案